
MMA955xL Intelligent Motion-Sensing
Platform

Devices Supported:
MMA9550L
MMA9551L
MMA9552L
MMA9553L

Document Number: MMA955xLRM
Rev. 0, 06/2011



How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support 

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd. Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China 
+86 10 5879 8000 
support.asia@freescale.com

Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150 
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and 
software implementers to use Freescale Semiconductor products. There are 
no express or implied copyright licenses granted hereunder to design or 
fabricate any integrated circuits or integrated circuits based on the 
information in this document.

Freescale Semiconductor reserves the right to make changes without further 
notice to any products herein. Freescale Semiconductor makes no warranty, 
representation or guarantee regarding the suitability of its products for any 
particular purpose, nor does Freescale Semiconductor assume any liability 
arising out of the application or use of any product or circuit, and specifically 
disclaims any and all liability, including without limitation consequential or 
incidental damages. “Typical” parameters that may be provided in Freescale 
Semiconductor data sheets and/or specifications can and do vary in different 
applications and actual performance may vary over time. All operating 
parameters, including “Typicals”, must be validated for each customer 
application by customer’s technical experts. Freescale Semiconductor does 
not convey any license under its patent rights nor the rights of others. 
Freescale Semiconductor products are not designed, intended, or authorized 
for use as components in systems intended for surgical implant into the body, 
or other applications intended to support or sustain life, or for any other 
application in which the failure of the Freescale Semiconductor product could 
create a situation where personal injury or death may occur. Should Buyer 
purchase or use Freescale Semiconductor products for any such unintended 
or unauthorized application, Buyer shall indemnify and hold Freescale 
Semiconductor and its officers, employees, subsidiaries, affiliates, and 
distributors harmless against all claims, costs, damages, and expenses, and 
reasonable attorney fees arising out of, directly or indirectly, any claim of 
personal injury or death associated with such unintended or unauthorized 
use, even if such claim alleges that Freescale Semiconductor was negligent 
regarding the design or manufacture of the part. 

Freescale, the Freescale logo, CodeWarrior and ColdFire are trademarks of 
Freescale Semiconductor, Inc. The Energy Efficient Solutions Logo and 
Xtrinsic are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2011. All rights reserved.

MMA955xLRM
Rev. 0
06/2011



MMA955xL Intelligent Motion-Sensing Platform, Rev. 0

Freescale Semiconductor, Inc. 3

Contents
Section Number Title Page

Chapter 1 About This Document
1.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

1.1.1 Purpose  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
1.1.2 Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

1.2 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

Chapter 2 Introduction
2.1 Hardware Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
2.2 Software Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
2.3 Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

Chapter 3 Pins and Connections
3.1 Package Pinout  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

3.1.1 Pin Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
3.1.2 Sensing Direction and Output Response  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

3.2 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
3.2.1 VDD and VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
3.2.2 VDDA and VSSA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
3.2.3 RESETB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
3.2.4 Slave I2C: SDA0 and SCL0  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
3.2.5 Master I2C: SDA1 and SCL1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
3.2.6 Analog-to-Digital Conversion: AN0, AN1  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
3.2.7 Rapid General-Purpose I/O: RGPIO[9:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
3.2.8 Interrupts: INT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
3.2.9 Debug/Mode Control: BKGD/MS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
3.2.10 Timer: PDB_A and PDB_B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
3.2.11 Slave SPI Interface: SCLK, SDI, SDO and SSB . . . . . . . . . . . . . . . . . . . . . . . . .27

3.3 System Connections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
3.3.1 MMA955xL as an Intelligent Slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
3.3.2 MMA955xL as a Sensor Hub  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
3.3.3 Power  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
3.3.4  RESETB Pin  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
3.3.5 Background / Mode Select (BKGD/MS)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

Chapter 4 Operational Phases and Modes of Operation
4.1 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
4.2 Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31

4.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
4.2.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
4.2.3 Additional Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
4.2.4 Phase Triggers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34



Section Number Title Page

MMA955xL Intelligent Motion-Sensing Platform, Rev. 0

4 Freescale Semiconductor, Inc.

4.3 Clock Operation as a Function of Mode/Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
4.4 Power Control Modes of Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

Chapter 5 Memory Maps
5.1 High Level Memory Map  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
5.2 Alignment Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
5.3 Memory Mapped Components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

5.3.1 Interrupt Controller  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
5.3.2 Nonvolatile Register Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
5.3.3 RGPIO  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

5.4 Detailed Register Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
5.5 Interrupt Vector Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
5.6 RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49

Chapter 6 Flash Memory Controller
6.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51

6.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
6.1.2 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

6.2 Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
6.3 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

6.3.1 Flash IDLE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
6.3.2 Flash READ  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
6.3.3 Flash PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
6.3.4 Flash ERASE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

6.4 Memory Maps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
6.4.1 Array Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
6.4.2 Register Memory Map  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54

6.5 FLASH Registers and Control Bits  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
6.5.1 Flash Options Register (FOPT)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55

6.6 Initialization Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
6.6.1 Factory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
6.6.2 End User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

6.7 Programming Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
6.8 Security  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

Chapter 7 ROM
7.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
7.2 Boot ROM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

7.2.1 Boot Step 1: RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
7.2.2 Boot Step 2: Load PC and SSP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
7.2.3 Boot Step 3: Load Configuration Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . .63
7.2.4 Boot Steps 4 and 9: For Flash Boots, Jump to Flash . . . . . . . . . . . . . . . . . . . . .64
7.2.5 Boot Step 5: Initialize Command Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . .65
7.2.6 Boot Step 6: Launch ROM Command Interpreter . . . . . . . . . . . . . . . . . . . . . . . .66



Section Number Title Page

MMA955xL Intelligent Motion-Sensing Platform, Rev. 0

Freescale Semiconductor, Inc. 5

7.3 Security and Rights Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
7.3.1 Access and Security Rules of Thumb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
7.3.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

7.4 Rights Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
7.4.1 Memory-Map Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
7.4.2 Rights-Management Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67

7.4.2.1 Device ID (DID) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
7.4.2.2 Page-Release Register (PRR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
7.4.2.3 Hardware Restrictions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68

7.5 ROM Command Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
7.5.1 Callable Utilities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
7.5.2 Packet Transfers and Commands Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
7.5.3 Common Error Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
7.5.4 CI_DEV_INFO  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70

7.5.4.1 CI_DEV_INFO Command Packet Format  . . . . . . . . . . . . . . . . . . . . . . .70
7.5.4.2 CI_DEV_INFO Response Packet Format . . . . . . . . . . . . . . . . . . . . . . . .71
7.5.4.3 Access/Security Policies for this Command . . . . . . . . . . . . . . . . . . . . . .72

7.5.5 CI_READ_WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
7.5.5.1 Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
7.5.5.2 Read/Write Memory Command Packet Format  . . . . . . . . . . . . . . . . . . .73
7.5.5.3 Read/Write Memory Response Packet Format  . . . . . . . . . . . . . . . . . . .74
7.5.5.4 Access/Security Policies for this Command . . . . . . . . . . . . . . . . . . . . . .75
7.5.5.5 Read/Write Memory Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76

7.5.6 CI_ERASE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
7.5.6.1 Erase Flash Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
7.5.6.2 Erase Command Packet Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
7.5.6.3 Erase Command Response Packet Format . . . . . . . . . . . . . . . . . . . . . .78
7.5.6.4 Access/Security Policies for this Command . . . . . . . . . . . . . . . . . . . . . .79
7.5.6.5 Erase Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

7.5.7 CI_CRC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
7.5.7.1 Checksum Command Packet Format . . . . . . . . . . . . . . . . . . . . . . . . . . .81
7.5.7.2 CRC Response Packet Format  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
7.5.7.3 Access/Security Policies for this Command . . . . . . . . . . . . . . . . . . . . . .82
7.5.7.4 CRC Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82

7.5.8 CI_RESET  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
7.5.8.1 Command Packet Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
7.5.8.2 Response Packet Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
7.5.8.3 Access/Security Policies for this Command . . . . . . . . . . . . . . . . . . . . . .85

7.5.9 CI_PROTECT and CI_UNPROTECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
7.5.9.1 CI_PROTECT Command Packet Format . . . . . . . . . . . . . . . . . . . . . . . .85
7.5.9.2 CI_UNPROTECT Command Packet Format  . . . . . . . . . . . . . . . . . . . . .85
7.5.9.3 CI_PROTECT and CI_UNPROTECT Response Packets Format  . . . . .86
7.5.9.4  Access/Security Policies for these Commands . . . . . . . . . . . . . . . . . . .86

7.6 User Callable ROM Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86



Section Number Title Page

MMA955xL Intelligent Motion-Sensing Platform, Rev. 0

6 Freescale Semiconductor, Inc.

7.6.1 RMF_GET_DEVICE_INFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
7.6.1.1 Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
7.6.1.2 Input Structure Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
7.6.1.3 Output Structure Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
7.6.1.4  Error Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
7.6.1.5 Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
7.6.1.6 Access/Security Policies for RMF_GET_DEVICE_INFO . . . . . . . . . . . .91
7.6.1.7 Example Use  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91

7.6.2 RMF_FLASH_PROGRAM  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
7.6.2.1 Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
7.6.2.2 Input Structure Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
7.6.2.3 Input Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
7.6.2.4 Output Structure Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
7.6.2.5 Output Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
7.6.2.6 Access/Security Policies for this Function  . . . . . . . . . . . . . . . . . . . . . . .92
7.6.2.7 Example Use  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92

7.6.3 RMF_FLASH_ERASE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
7.6.3.1 Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
7.6.3.2 Input Structure Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
7.6.3.3 Input Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
7.6.3.4 Output Structure Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
7.6.3.5 Output Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
7.6.3.6 Access/Security Policies for this Function  . . . . . . . . . . . . . . . . . . . . . . .95
7.6.3.7 Example Use  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95

7.6.4 RMF_FLASH_PROTECT and RMF_FLASH_UNPROTECT  . . . . . . . . . . . . . . .95
7.6.4.1 Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
7.6.4.2 Input Structure Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
7.6.4.3 Output Structure Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
7.6.4.4 Access/Security Policies for RMF_FLASH_PROTECT/UNPROTECT . .96
7.6.4.5 Example Use  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96

7.6.5 RMF_FLASH_UNSECURE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
7.6.5.1 Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
7.6.5.2 Input Structure Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
7.6.5.3 Output Structure Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
7.6.5.4 Access/Security Policies for RMF_FLASH_UNSECURE . . . . . . . . . . . .96
7.6.5.5 Example Use  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97

7.6.6 RMF_CRC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
7.6.6.1 Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
7.6.6.2 Input Structure Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
7.6.6.3 Input Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
7.6.6.4 Output Structure Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97
7.6.6.5 Error Codes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
7.6.6.6 Example Use  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
7.6.6.7 Access/Security Policies for RMF_CRC . . . . . . . . . . . . . . . . . . . . . . . . .98



Section Number Title Page

MMA955xL Intelligent Motion-Sensing Platform, Rev. 0

Freescale Semiconductor, Inc. 7

Chapter 8 Slave Interface
8.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99

8.1.1 I2C Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
8.1.2 I2C Limitations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
8.1.3 SPI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
8.1.4 SPI Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
8.1.5 SPI Limitations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

8.2 Module Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
8.3 Data Coherency Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

8.3.1  Read Buffer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104
8.3.2 Binary Semaphore (Mutex) Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105

8.4 Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106
8.4.1 Mailbox Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106
8.4.2 Semaphore Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
8.4.3 Slave I2C Address Register  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
8.4.4 Slave Port Status and Control Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
8.4.5 Write Status Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
8.4.6 Read Status Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
8.4.7 Mutext Timeout Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
8.4.8 Slave Port Output Interrupt (INT_O) Control Register  . . . . . . . . . . . . . . . . . . .113

8.5 I2C Serial Protocol and Timing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
8.5.1 Baud Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
8.5.2 Serial-Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
8.5.3 Start, Stop and Repeated Start Conditions  . . . . . . . . . . . . . . . . . . . . . . . . . . .116
8.5.4 Bit Transfer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117
8.5.5 Acknowledge  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117
8.5.6 The Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
8.5.7 Message Format for Writing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119
8.5.8 Message Format for Reading MMA955xL  . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

8.6 SPI Serial Protocol and Timing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
8.6.1 SPI Read Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123
8.6.2 SPI Write Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125

8.7 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126
8.7.1 Mailbox Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126
8.7.2 Semaphore Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127

8.8 Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127

Chapter 9 Inter-Integrated Circuit
9.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129

9.1.1 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
9.1.2 Modes of Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
9.1.3 Block Diagram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130

9.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
9.2.1 SCL — Serial Clock Line  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131



Section Number Title Page

MMA955xL Intelligent Motion-Sensing Platform, Rev. 0

8 Freescale Semiconductor, Inc.

9.2.2 SDA — Serial Data Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
9.3 Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132

9.3.1 Module Memory Map  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132
9.3.2 I2C Address Register 1 (IICA1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132
9.3.3 I2C Frequency Divider Register (IICF)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
9.3.4 I2C Control Register (IICC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135
9.3.5 I2C Status Register (IICS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136
9.3.6 I2C Data I/O Register (IICD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138
9.3.7 I2C Control Register 2 (IICC2)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138
9.3.8 I2C Programmable Input Glitch Filter (IICFLT)  . . . . . . . . . . . . . . . . . . . . . . . . .139

9.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140
9.4.1 I2C Protocol  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140

9.4.1.1 START Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141
9.4.1.2 Slave Address Transmission  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141
9.4.1.3 Data Transfer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142
9.4.1.4 STOP Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142
9.4.1.5 Repeated START Signal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142
9.4.1.6 Arbitration Procedure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142
9.4.1.7 Clock Synchronization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143
9.4.1.8 Handshaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143
9.4.1.9 Clock Stretching  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143

9.4.2 10-Bit Address  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144
9.4.2.1 Master-Transmitter Addresses a Slave-Receiver . . . . . . . . . . . . . . . . .144
9.4.2.2 Master-Receiver Addresses a Slave-Transmitter . . . . . . . . . . . . . . . . .144

9.4.3 Address Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145
9.5 Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145
9.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145

9.6.1 Byte Transfer Interrupt  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146
9.6.2 Address Detect Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146
9.6.3 Exit from Low-Power/Stop Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146
9.6.4 Arbitration Lost Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146
9.6.5 Programmable Input Glitch Filter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147
9.6.6 Address Matching Wake-up  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147

9.7 Initialization/Application Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148

Chapter 10 Analog Front End
10.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153
10.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153
10.3 AFE Architecture and Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153

10.3.1 ADC Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154
10.3.2 Accelerometer Principle of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156

10.4 Memory Map Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159



Section Number Title Page

MMA955xL Intelligent Motion-Sensing Platform, Rev. 0

Freescale Semiconductor, Inc. 9

Chapter 11 System Integration Module (SIM)
11.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161
11.2 Reset Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162

11.2.1 Reset Sources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162
11.2.2 Reset Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163

11.3 Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165
11.3.1 STOP Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165
11.3.2 DEBUG Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166

11.4 Oscillator Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167
11.4.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167
11.4.2 CPU  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167

11.5 Clock Gating  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167
11.6 Module Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168
11.7 Registers Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169

11.7.1 STOPCR - STOP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169
11.7.2 FCSR - Frame Control and Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . .170
11.7.3 RCSR - Reset Control and Status Register  . . . . . . . . . . . . . . . . . . . . . . . . . . .171
11.7.4 Peripheral Clock Enable Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174
11.7.5 SIM Pin Mux Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176

Chapter 12 On-Chip Oscillator (CLKGEN)
12.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179
12.2 High-Level Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179
12.3 Module Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181
12.4 Registers Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182

12.4.1 CK_OSCTRL - Oscillator Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .182
12.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183

Chapter 13 Programmable Delay Block (PDB)
13.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185

13.1.1 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185
13.1.2 Modes of Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185
13.1.3 Block Diagram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186

13.2 Memory Map and Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187
13.2.1 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187
13.2.2 Registers Descriptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187

13.2.2.1 PDB Control and Status Register (CSR)  . . . . . . . . . . . . . . . . . . . . . .187
13.2.2.2 PDB Delay A and Delay B Registers (DELAYA and DELAYB)  . . . . .189
13.2.2.3 PDB Modulus Register (MOD)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190
13.2.2.4 PDB COUNT Register (COUNT)  . . . . . . . . . . . . . . . . . . . . . . . . . . . .190

13.2.3 Functional Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190
13.2.3.1 Miscellaneous Concerns and SoC Integration  . . . . . . . . . . . . . . . . . .190

13.3 Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191
13.4 Clocks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191



Section Number Title Page

MMA955xL Intelligent Motion-Sensing Platform, Rev. 0

10 Freescale Semiconductor, Inc.

13.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191

Chapter 14 Port Controls
14.1 MMA955xL Port Control Customizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193

14.1.1 General Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193
14.1.2 Exceptions to the General Rules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194
14.1.3 Pins Not Covered by the Port Control Modules  . . . . . . . . . . . . . . . . . . . . . . . .194

14.2 Standard Pin Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194
14.2.1 Pin Controls Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194
14.2.2 Pin Controls Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195

14.2.2.1 Port x Pull-Up Enable Register (PCxPE)  . . . . . . . . . . . . . . . . . . . . . .196
14.2.2.2 Port x Slew Rate Enable Register (PCxSE) . . . . . . . . . . . . . . . . . . . .196
14.2.2.3 Port x Drive Strength Selection Register (PCxDS) . . . . . . . . . . . . . . .197
14.2.2.4 Port x Input Filter Enable Register (PCxIFE)  . . . . . . . . . . . . . . . . . . .197

Chapter 15 Rapid GPIO (RGPIO)
15.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199

15.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199
15.1.2 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200
15.1.3 Modes of Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201

15.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201
15.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201
15.2.2 Detailed Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201

15.3 Memory Map/Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201
15.3.1 RGPIO Data Direction (RGPIO_DIR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202
15.3.2 RGPIO Data (RGPIO_DATA)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203
15.3.3 RGPIO Pin Enable (RGPIO_ENB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204
15.3.4 RGPIO Clear Data (RGPIO_CLR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204
15.3.5 RGPIO Set Data (RGPIO_SET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205
15.3.6 RGPIO Toggle Data (RGPIO_TOG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205

15.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206
15.5 Initialization Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206
15.6 Application Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206

15.6.1 Application 1: Simple Square-Wave Generation . . . . . . . . . . . . . . . . . . . . . . . .206
15.6.2 Application 2: 16-bit Message Transmission using SPI Protocol  . . . . . . . . . . .207

Chapter 16 Pin Interrupt Function
16.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209
16.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209
16.3 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209
16.4 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209
16.5 Signal Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210
16.6 Memory Map and Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210

16.6.1 Module Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210



Section Number Title Page

MMA955xL Intelligent Motion-Sensing Platform, Rev. 0

Freescale Semiconductor, Inc. 11

16.6.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211
16.6.2.1 Interrupt Status and Control Register (IRQSC)  . . . . . . . . . . . . . . . . .211

16.7 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212
16.7.1 External Interrupt Pin  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212
16.7.2 IRQ Edge Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212
16.7.3 IRQ Sensitivity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212
16.7.4 IRQ Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212
16.7.5 Clearing an IRQ Interrupt Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213

16.8 Exit from Low-Power Modes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213
16.8.1 STOP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213

16.9 Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213
16.10Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214

Chapter 17 16-Bit Modulo Timer
17.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215
17.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215

17.2.1 Block Diagram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216
17.2.2 Modes of Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216

17.2.2.1 MTIM16 in Stop Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216
17.2.2.2 MTIM16 in Active Background Mode  . . . . . . . . . . . . . . . . . . . . . . . . .216

17.3 Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216
17.3.1 MTIM16 Status and Control Register (MTIMxSC)  . . . . . . . . . . . . . . . . . . . . . .217
17.3.2 MTIM16 Clock Configuration Register (MTIMxCLK)  . . . . . . . . . . . . . . . . . . . .217
17.3.3 MTIM16 Counter Register High/Low (MTIMxCNTH:L) . . . . . . . . . . . . . . . . . . .218
17.3.4 MTIM16 Modulo Register High/Low (MTIMxMODH/MTIMxMODL)  . . . . . . . . .219

17.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220
17.4.1 MTIM16 Operation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222

Chapter 18 Timer/PWM Module (TPM)
18.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223

18.1.1 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223
18.1.2 Modes of Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224

18.1.2.1 Input Capture Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224
18.1.2.2 Output Compare Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224
18.1.2.3 Edge-Aligned PWM Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224
18.1.2.4 Center-Aligned PWM mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225

18.1.3 Block Diagram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226
18.2 Signal Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227

18.2.1 Detailed Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227
18.2.1.1 TPMxCHn — TPM Channel n I/O Pins . . . . . . . . . . . . . . . . . . . . . . . .227

18.3 Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229
18.3.1 TPM Status and Control Register (TPMxSC) . . . . . . . . . . . . . . . . . . . . . . . . . .229
18.3.2 TPM-Counter Registers (TPMxCNTH:TPMxCNTL) . . . . . . . . . . . . . . . . . . . . .231
18.3.3 TPM Counter Modulo Registers (TPMxMODH:TPMxMODL) . . . . . . . . . . . . . .232



Section Number Title Page

MMA955xL Intelligent Motion-Sensing Platform, Rev. 0

12 Freescale Semiconductor, Inc.

18.3.4 TPM Channel n Status and Control Register (TPMxCnSC) . . . . . . . . . . . . . . .233
18.3.5 TPM Channel Value Registers (TPMxCnVH:TPMxCnVL)  . . . . . . . . . . . . . . . .234

18.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235
18.4.1 Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236

18.4.1.1 Counter Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236
18.4.1.2 Counter Overflow and Modulo Reset  . . . . . . . . . . . . . . . . . . . . . . . . .236
18.4.1.3 Counting Modes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236
18.4.1.4 Manual Counter Reset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237

18.4.2 Channel Mode Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237
18.4.2.1 Input Capture Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237
18.4.2.2 Output Compare Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237
18.4.2.3 Edge-Aligned PWM Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238
18.4.2.4 Center-Aligned PWM Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239

18.5 Reset Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240
18.5.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240
18.5.2 Description of Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240

18.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240
18.6.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240
18.6.2 Description of Interrupt Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241

18.6.2.1 Timer Overflow Interrupt (TOF) Description . . . . . . . . . . . . . . . . . . . .241
18.6.2.2 Channel Event Interrupt Description . . . . . . . . . . . . . . . . . . . . . . . . . .241

Chapter 19 Interrupt Controller (CF1_INTC)
19.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243

19.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244
19.1.2 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247
19.1.3 Modes of Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248

19.2 External Signal Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248
19.3 Memory Map and Register Definition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248

19.3.1 Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248
19.3.2 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249

19.3.2.1 INTC Force Interrupt Register (INTC_FRC) . . . . . . . . . . . . . . . . . . . .249
19.3.2.2 INTC Programmable Level 6, Priority {7,6} Registers (INTC_PL6P{7,6}) 

250
19.3.2.3 INTC Wake-up Control Register (INTC_WCR) . . . . . . . . . . . . . . . . . .251
19.3.2.4 INTC Set Interrupt Force Register (INTC_SFRC)  . . . . . . . . . . . . . . .252
19.3.2.5 INTC Clear Interrupt Force Register (INTC_CFRC) . . . . . . . . . . . . . .253
19.3.2.6 INTC Software and Level-n IACK Registers (n = 1,2,3,...,7)  . . . . . . .254

19.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255
19.4.1 Handling of Non-Maskable Level 7 Interrupt Requests  . . . . . . . . . . . . . . . . . .255

19.5 Initialization Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255
19.6 Application Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .255

19.6.1 Emulation of the HCS08’s 1-Level IRQ Handling  . . . . . . . . . . . . . . . . . . . . . . .255
19.6.2 Using INTC_PL6P{7,6} Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256



Section Number Title Page

MMA955xL Intelligent Motion-Sensing Platform, Rev. 0

Freescale Semiconductor, Inc. 13

19.6.3 More on Software IACKs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256

Chapter 20 ColdFire Core
20.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259
20.2 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259
20.3 Memory Map/Register Description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .260

20.3.1 Data Registers (D0–D7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262
20.3.2 Address Registers (A0–A6)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262
20.3.3 Supervisor/User Stack Pointers (A7 and OTHER_A7) . . . . . . . . . . . . . . . . . . .262

20.3.3.1 Condition Code Register (CCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263
20.3.4 Program Counter (PC)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264
20.3.5 Vector Base Register (VBR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264
20.3.6 CPU Configuration Register (CPUCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .265
20.3.7 Status Register (SR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266

20.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267
20.4.1 Instruction Set Architecture (ISA_C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267
20.4.2 Exception Processing Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .268

20.4.2.1 Exception Stack Frame Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . .271
20.4.3 Processor Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272

20.4.3.1 Access Error Exception  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272
20.4.3.2 Address Error Exception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273
20.4.3.3 Illegal Instruction Exception  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273
20.4.3.4 Privilege Violation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .274
20.4.3.5 Trace Exception  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275
20.4.3.6 Unimplemented Line-A Opcode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275
20.4.3.7 Unimplemented Line-F Opcode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275
20.4.3.8 Debug Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276
20.4.3.9 RTE and Format Error Exception . . . . . . . . . . . . . . . . . . . . . . . . . . . .276
20.4.3.10 TRAP Instruction Exception  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276
20.4.3.11 Unsupported Instruction Exception . . . . . . . . . . . . . . . . . . . . . . . . . .276
20.4.3.12 Interrupt Exception  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277
20.4.3.13 Fault-on-Fault Halt  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277
20.4.3.14 Reset Exception  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277

20.4.4 Instruction Execution Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .280
20.4.4.1 Timing Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .280
20.4.4.2 MOVE Instruction Execution Times  . . . . . . . . . . . . . . . . . . . . . . . . . .281
20.4.4.3 Standard One Operand Instruction Execution Times . . . . . . . . . . . . .282
20.4.4.4 Standard Two Operand Instruction Execution Times . . . . . . . . . . . . .283
20.4.4.5 Miscellaneous Instruction Execution Times  . . . . . . . . . . . . . . . . . . . .285
20.4.4.6 Branch Instruction Execution Times . . . . . . . . . . . . . . . . . . . . . . . . . .286



Section Number Title Page

MMA955xL Intelligent Motion-Sensing Platform, Rev. 0

14 Freescale Semiconductor, Inc.

Chapter 21 Version 1 ColdFire Debug (CF1_DEBUG)
21.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287

21.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .288
21.1.2 Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289
21.1.3 Modes of Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289

21.2 External Signal Descriptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291
21.3 Memory Map/Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292

21.3.1 Configuration/Status Register (CSR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294
21.3.2 Extended Configuration/Status Register (XCSR) . . . . . . . . . . . . . . . . . . . . . . .296
21.3.3 Configuration/Status Register 2 (CSR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299
21.3.4 BDM Address Attribute Register (BAAR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304
21.3.5 Address Attribute Trigger Register (AATR) . . . . . . . . . . . . . . . . . . . . . . . . . . . .304
21.3.6 Trigger Definition Register (TDR)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .306
21.3.7 Program Counter Breakpoint/Mask Registers (PBR0–3, PBMR) . . . . . . . . . . .309
21.3.8 Address Breakpoint Registers (ABLR, ABHR) . . . . . . . . . . . . . . . . . . . . . . . . .310
21.3.9 Data Breakpoint and Mask Registers (DBR, DBMR)  . . . . . . . . . . . . . . . . . . . .311
21.3.10Resulting Set of Possible Trigger Combinations  . . . . . . . . . . . . . . . . . . . . . . .312

21.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313
21.4.1 Background Debug Mode (BDM)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313

21.4.1.1 CPU Halt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313
21.4.1.2 Background Debug Serial Interface Controller (BDC)  . . . . . . . . . . . .315
21.4.1.3 BDM Communication Details  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316
21.4.1.4 BDM Command Set Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . .319
21.4.1.5 BDM Command Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .321
21.4.1.6 GO  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329
21.4.1.7 Serial Interface Hardware Handshake Protocol  . . . . . . . . . . . . . . . . .336
21.4.1.8 Hardware Handshake Abort Procedure  . . . . . . . . . . . . . . . . . . . . . . .338

21.4.2 Real-Time Debug Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .341
21.4.3 Freescale-Recommended BDM Pinout  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .341



MMA955xL Intelligent Motion-Sensing Platform, Rev. 0

Freescale Semiconductor, Inc. 15

Chapter 1  About This Document

1.1 Overview

1.1.1 Purpose

This reference manual describes the features, architecture and programming model of the MMA955xL, an 
intelligent, three-axis accelerometer.

1.1.2 Audience

This document is primarily for system architects and software application developers who are using or 
considering use of the MMA955xL in a system.

1.2 Conventions
This document uses the following notational conventions:

cleared/set When a bit takes the value 0, it is said to be cleared; when it takes a value of 1, it 
is said to be set.

MNEMONICS In text, instruction mnemonics are shown in uppercase. 

mnemonics In code and tables, instruction mnemonics are shown in lowercase. 

italics Italics indicate variable command parameters.
Book titles also are italicized.

0x0 Prefix to denote a hexadecimal number

0b0 Prefix to denote a binary number

REG[FIELD] Abbreviations for registers are shown in uppercase. Specific bits, fields or ranges 
appear in brackets. For example, RAMBAR[BA] identifies the base address field 
in the RAM base-address register.

nibble A 4-bit data unit

byte An 8-bit data unit

word A 16-bit data unit

longword A 32-bit data unit

x In some contexts, such as signal encodings, x indicates a “do not care.”

n Used to express an undefined numerical value.

~ NOT logical operator

& AND logical operator
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| OR logical operator

|| Field concatenation operator

OVERBAR Indicates that a signal is active-low.

Register Figure Conventions

This document uses the following conventions for the register reset values:

— The bit is undefined at reset.

u The bit is unaffected by reset.

[signal_name] Reset value is determined by the polarity of the indicated signal.

The following register fields are used:

References
1. IEEE Standard Test Access Port and Boundary-Scan Architecture, IEEE Std. 1149.1™-2001 

(R2008)

2. The I2C-Bus Specification Version 2.1, January 2000, Philips Semiconductors

3. I2C-Bus Specification and User Manual, NXP Semiconductors Document UM10204, Rev. 03 - 
19 June 2007

4. ColdFire Family Programmer’s Reference Manual, Freescale Semiconductor, CFPRM Rev. 3, 
02/2005

5. Wikipedia entry for “Semaphore”: http://en.wikipedia.org/wiki/Semaphore_(programming) 

R 0 Indicates a reserved bit field in a memory-mapped register. These bits are always read as 0.

W

R 1 Indicates a reserved bit field in a memory-mapped register. These bits are always read as 1.

W

R FIELDNAME Indicates a read/write bit.

W

R FIELDNAME Indicates a read-only bit field in a memory-mapped register.

W

R Indicates a write-only bit field in a memory-mapped register.

W FIELDNAME

R FIELDNAME Write 1 to clear: indicates that writing a 1 to this bit field clears it.

W w1c

R 0 Indicates a self-clearing bit.

W FIELDNAME

http://en.wikipedia.org/wiki/Semaphore_(programming)
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6. ITU-T V.41 Recommendation: Code-Independent Error Control System, available at 
http://www.itu.int/publications/index.html.

7. ITU-T X.25 Recommendation: Interface between Data Terminal Equipment (DTE) and Data 
Circuit-terminating Equipment (DCE) for terminals operating in the packet mode and connected 
to public data networks by dedicated circuit, available at 
http://www.itu.int/publications/index.html.

8. ITU-T T.30 Recommendation: Procedures for document facsimile transmission in the general 
switched telephone network, available at http://www.itu.int/publications/index.html.

http://www.itu.int/publications/index.html
http://www.itu.int/publications/index.html
http://www.itu.int/publications/index.html
http://www.itu.int/publications/index.html
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Chapter 2 Introduction
The MMA955xL three-axis accelerometer is a member of Freescale’s Xtrinsic family of intelligent sensor 
platforms. This device incorporates dedicated accelerometer MEMS transducers, signal conditioning, data 
conversion and a 32-bit, programmable microcontroller.

This unique blend transforms Freescale’s MMA955xL into an intelligent, high-precision motion-sensing 
platform able to manage multiple sensor inputs and make system-level decisions required for sophisticated 
applications such as gesture recognition, pedometer functionality and eCompass tilt compensation and 
calibration.

The MMA955xL is programmed and configured with CodeWarrior Development Studio software. This 
integrated-design environment enables customers to quickly and easily shape and implement custom 
algorithms and features to exactly match their application needs.

Using its master I2C module, the MMA955xL can manage secondary sensors such as pressure sensors, 
magnetometers or gyroscopes. This allows sensor initialization, calibration, data compensation and 
computation functions to be off-loaded from the system application processor. Multiple sensor inputs can 
be easily consolidated by the MMA955xL which acts as an intelligent sensing hub and highly configurable 
decision engine. Total system power consumption is significantly reduced as the application processor 
stays powered down until absolutely needed.



Introduction

MMA955xL Intelligent Motion-Sensing Platform, Rev. 0

20 Freescale Semiconductor, Inc.

Figure 2-1. Block Diagram of the MMA955xL

2.1 Hardware Features
• Three accelerometer operating ranges:

— ±2g: Suits most user-interaction (mouse) motions and free fall

— ±4g: Covers most regular human dynamics (walking, jogging)

— ±8g: Detects most abrupt activities (gaming)

• Integrated temperature sensor

• One slave SPI or I2C interface operates up to 2 MHz dedicated to communication with host 
processor

• One master I2C interface operates up to 400 kbps used to communicate with external sensors

• 10, 12, 14 and 16-bit ADC trimmed data formats available.

• 1.8V Supply Voltage

• 32-bit ColdFire V1 CPU

• Extensive set of power management features and low power modes.
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• Single Wire Background Debug Mode (BDM) pin interface

• 16 KB Flash Memory

• 2 KB random access memory

• ROM-based flash controller and slave port command line interpreter

• Two channel timer with input capture, output capture or edge-aligned PWM

• Programmable delay block for scheduling events relative to start of frame

• Modulo timer for scheduling periodic events

2.2 Software Features
This device may be programmed to provide any of the following:

• Orientation Detection (Portrait/Landscape)

• High-g/Low-g Threshold Detection

• Pulse Detection (Single, Double and Directional Tap)

• Auto Wake/Sleep

• Linear and Rotational Freefall

• Flick Detection

• Embedded Smart FIFO

• Power Management

• Pedometer

• Shock, Vibration and Sudden Motion Detection

• Tilt Compensated eCompass and Calibration (soft iron and hard iron)

The association of a high-performance accelerometer with a powerful, embedded ColdFire V1 MCU core 
gives the possibility to grow and customize this list in an unprecedented way.

2.3 Typical Applications
This low-power intelligent sensor is optimized for use in portable and mobile consumer products such as:

• Mobile phones/PMP/PDA/digital cameras

— Orientation Detection (Portrait/Landscape)

— Image Stability

— Tilt control enabled with higher resolution

— Gesture Recognition

— Tap to Control

— Auto Wake/Sleep for low power consumption

• Smartbooks/eReaders/Netbooks/Laptops

— Anti-theft

— Freefall Detection for Hard Disk Drives

— Orientation Detection
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— Tap Detection

• Pedometers

• Gaming and Toys

• eCompass Tilt Compensation

• Personal Navigation Devices (PNDs)

• Public Transportation Ticketing Systems

• Activity Monitoring in Medical Applications

• Security

— Anti-theft

— Shock Detection

— Tilt

• Fleet Monitoring, Tracking

— Dead Reckoning

— System Auto Wake-up on Movement

— Detection

— Shock Recording

— Anti-theft

• Power Tools and Small Appliances

— Tilt

— Safety Shut-off
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Chapter 3  Pins and Connections

3.1 Package Pinout
The package pinout definition for this device is designed as a superset of functions found on competitive 
devices, as well as other Freescale offerings. All pins on the device are utilized and many have multiple 
possible uses.

The following sections describe the pinout. Users may select from multiple pin functions via the SIM pin 
mux-control registers.

Figure 3-1. Device Pinout and Coordinate System

X, Y, Z arrows indicate package reference frame 

1

2

3

4

5

6 7 8

9

13

12

11

10

16 15 14

VDD
BKGD/MS/RGPIO9

RESETB
SCL0/RGPIO0

VSS

RGPIO7/AN1
RGPIO6/AN0
RGPIO5/PDB_A
RESERVED(VSS)
RGPIO4/INT

V
S

S
A

R
G

P
IO

8/
P

D
B

_B
V

D
D

A

S
D

A
0/

R
G

P
IO

1
R

G
P

IO
2/

S
C

L1
R

G
P

IO
3/

S
D

A
1



Pins and Connections

MMA955xL Intelligent Motion-Sensing Platform, Rev. 0

24 Freescale Semiconductor, Inc.

3.1.1 Pin Functions

Table 3-1 summarizes functional options for each of the device’s pins.

Table 3-1. Pin Functions

Pin # Pin Function #11

1 Pin Function 1 represents the reset state of the device. Pin functions may be changed via the SIM pin mux-control registers 
(Section 11.7.5, “SIM Pin Mux Control Registers”).

Pin Function #2 Pin Function #3 Description

1 VDD Digital power supply

2 BKGD/MS RGPIO9 Background debug/mode select RGPIO9

3 RESETB2

2 RESETB is an open-drain, bidirectional pin. By default, the output function is not on.

Active low reset

4 SCL0 RGPIO0 SCLK Serial clock for slave I2C/RGPIO0/Serial clock for slave 
SPI

5 VSS Digital ground

6 SDA0 RGPIO1 SDI Serial data for slave I2C/RGPIO1/SPI serial data input

7 RGPIO2 SCL1 SDO RGPIO2/Serial clock for master I2C/SPI serial data output

83

3 RGPIO3/SDA1/SSB = LOW at startup indicates that SPI should be used as slave instead of the I2C module.

RGPIO3 SDA1 SSB RGPIO3/Serial data for master I2C/SPI slave select

9 RGPIO4 INT RGPIO4/Interrupt input

10 RESERVED (Connect to VSS) Must be connected to GND externally

11 RGPIO5 PDB_A INT_O RGPIO5/PDB_A

12 RGPIO6 AN0 TPMCH0 RGPIO6/ADC Input 0 / TPM Channel 0

13 RGPIO7 AN1 TPMCH1 RGPIO7/ADC Input 1 / TPM Channel 1

14 VDDA Analog power

15 RGPIO8 PDB_B RGPIO8/PDB_B

16 VSSA Analog ground
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3.1.2 Sensing Direction and Output Response

Figure 3-2. Sensing Direction and Output Response

3.2 Pin Descriptions
The following sections provide descriptions of the various pin functions available on the MMA955xL 
devices. Ten of the device pins are multiplexed with Rapid GPIO (RGPIO) functions. (See Chapter 15, 
“Rapid GPIO (RGPIO)”.) The “Primary Pin Function #1” column of Table 3-1 lists the functions that are 
active when the device exits the reset state. The pin mux control registers in the System Integration Module 
(or SIM) can be used to change pin assignments for these pins after reset. (See Chapter 11, “System 
Integration Module (SIM)”.) 

3.2.1 VDD and VSS

These are the digital power and ground pins and must be connected to the same voltage. VDD is nominally 
1.8V for this device.

3.2.2 VDDA and VSSA

These are the analog-power and ground pins. VDDA is nominally 1.8V for this device and must be filtered 
to remove any digital noise that may be present on the supply. VDDA is usually connected to VDD through 
an appropriate filtering network.
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3.2.3 RESETB

The RESETB pin is an open-drain, bidirectional pin with an internal weak pull-up resistor. At power-up, 
it is configured strictly as an input pin. Setting RCSR[DR] (Reset Control and Status Register “Drive 
Reset” bit) to 1 will cause the RESET function to become bidirectional. (See Table 11-13 on page 172.) 
Using this feature, the MMA955xL can reset external devices whenever it is reset for any purpose other 
than power-on-reset.

3.2.4 Slave I2C: SDA0 and SCL0

These are the slave I2C data and clock signals, respectively. MMA955xL may be controlled via this serial 
port or through the slave SPI interface.

State at reset: Open-drain, bidirectional in input mode, pull-up resistor disabled.

3.2.5 Master I2C: SDA1 and SCL1

These are the master I2C clock and data signals, respectively. Because MMA955xL contains a 32-bit 
ColdFire V1 CPU, it is fully capable of mastering other devices in the system via this serial port. (For 
details, see Chapter 9, “Inter-Integrated Circuit”.) This allows MMA955xL to off-load certain tasks from 
the main CPU, allowing it to conserve power by entering sleep mode. The MMA955xL can then issue a 
wake-up interrupt to the main CPU when motion is detected by the on-chip transducer or when a slave 
device (such as pressure sensor or magnetometer) flags that activity has occurred.

State at reset: Inactive. SDA1 and SCL1 are secondary functions on RGPIO[3:2], which owns the pins at 
reset.

3.2.6 Analog-to-Digital Conversion: AN0, AN1

The on-chip ADC can be used to perform a differential, analog-to-digital conversion based on the voltage 
present across pins AN0(-) and AN1(+). Conversions on these pins are subject to the same output data rate 
(ODR) rules as the MEMS transducer signals.

State at reset: Inactive. AN[1:0] are secondary functions on RGPIO[7:6], which owns the pins at reset.

3.2.7 Rapid General-Purpose I/O: RGPIO[9:0]

The ColdFire V1 CPU has a feature called “Rapid GPIO” (RGPIO). This is a 16-bit input/output port with 
single-cycle write, set, clear and toggle functions available to the CPU. The MMA955xL brings out the 
lower 10 bits of that port as pins of the device.

State at reset: 

• RGPIO[9]: Inactive. BKGD/MS owns the pin at reset.

• RGPIO[8:2]: Pin mux registers for these bits are configured as RGPIO. Pull-ups are disabled. 
RGPIO functionality can be enabled via RGPIO_ENB[8:2].

• RGPIO[1:0]: Inactive. SDA0 and SCL0 own the pin at reset.
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3.2.8 Interrupts: INT

This input pin may be used to wake the CPU from a deep-sleep mode. It can be programmed to trigger on 
either rising or falling edge or high or low level. This pin operates as a level-7 (high-priority) interrupt.

State at reset: Inactive. RGPIO[4] owns the pin at reset.

3.2.9 Debug/Mode Control: BKGD/MS

At power-up, this pin operates as Mode Select. If low during power-up, the CPU will boot into debug halt 
mode. If high, the CPU will boot normally and run code.

After power-on reset, this pin can operate as a bidirectional, single-wire background debug port. It can be 
used by development tools for downloading code into on-chip RAM and flash and to debug code.

State at reset: Mode Select (MS).

• MS = 0 at exit from reset => Boot to debug halt mode

• MS = 1 at exit from reset => Boot to run mode

State after reset: BKGD. The BKGD pin is a bidirectional, pseudo-open-drain pin used for 
communications with a debug environment. For additional details, see Chapter 21, “Version 1 ColdFire 
Debug (CF1_DEBUG)”.

3.2.10 Timer: PDB_A and PDB_B

These are the two outputs of the programmable delay block described in Chapter 13, “Programmable 
Delay Block (PDB)”. Normally, the PDB is used to schedule internal events at some fixed interval(s) with 
respect to the start of either an analog or digital phase. By bringing the PDB outputs to these pins, it 
becomes possible for the MMA955xL to initiate some external event, also with respect to start of analog 
or digital phase.

3.2.11 Slave SPI Interface: SCLK, SDI, SDO and SSB

These are the slave SPI clock, data in, data out and slave select signals, respectively. The MMA955xL may 
be controlled via this serial port or via the slave I2C interface.

State at reset: In reset, these pins are configured as per I2C and RGPIO[3:2] functions listed above. The 
pin may be reconfigured for SPI use as part of the boot process.

3.3 System Connections

3.3.1 MMA955xL as an Intelligent Slave

Figure 3-3 shows an example of the complete system connections when the MMA955xL is used as a 
smart-accelerometer, slave peripheral to a host processor.

All that are required to attach the MMA955xL to a master CPU are I2C termination resistors, a ferrite bead 
and a few bypass capacitors. Optionally, the RGPIO pins can be programmed to generate interrupts in 
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order to wake the master CPU, as required by any changes in the inertial input. In the latter case, the 
interrupts should be routed to the external interrupt input pins of the master CPU.

Figure 3-3 includes the background debug header connections as well as a manual reset push button.

Figure 3-3. MMA955xL as a Slave with BDM Header and Reset Button

3.3.2 MMA955xL as a Sensor Hub

Figure 3-4 shows an example of the system connections when the MMA955xL is used as an autonomous 
sensor hub. This type of connection increases the overall system efficiency as the various sensors are 
handled directly by the MMA955xL, through its master I²C bus and analog inputs.

In such a sensor-hub configuration, the MMA955xL processes and fuses the sensors’ data before 
transfering it to the host platform, so that data is refined as higher-level information. The master CPU can 
go into Sleep mode as the MMA955xL will issue a wake-up request should any external event require the 
CPU’s attention. The RGPIO8 pin (Pin 15) is typically used for wake-up requests.
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Figure 3-4. MMA955xL as a Sensor Hub

3.3.3 Power

An internal circuit powered by VDDA provides the MMA955xL with a power-on-reset signal. In order for 
this signal to be properly recognized, it is important that VDD is powered up before, or simultaneously 
with, VDDA.

The voltage potential difference between VDD and VDDA must not exceed 0.1V. The simplest way to 
accomplish this is to power both pins from the same voltage source.

When using the same voltage source, some digital noise might reach the analog section. To prevent this, 
connect a small inductor or ferrite bead in serial with both the VDDA and VSSA traces. Additionally, two 
ceramic capacitors (of approximately 1 µF, + 0.1 µF) can be used to efficiently bypass the power and 
ground of both digital and analog supply rails.

3.3.4  RESETB Pin

Figure 3-3 illustrates an exhaustive arrangement where a Reset event can be generated by:

• An external, manual reset button

• The Background Debug Mode interface

• The VDD main supply
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An external, pull-up resistor is necessary to reduce and better control the RESETB voltage-settling time. 
An optional shunt capacitor to ground can be added to that node in order to reduce EMC and noise 
susceptibility. With the shunt capacitor, the maximum RC time constant has to be strictly bounded. (For 
details, see Chapter 11, “System Integration Module (SIM)”.)

At power-up, the RESETB pin is configured as an input pin, but it also can be programmed as 
bidirectional. Using the bidirectional feature, the MMA955xL can reset external devices for any purpose 
other than power-on-reset. When using the RESETB pin output drive capability, the allowed upper limit 
for the RC time constant is reduced to only micro-seconds.

3.3.5 Background / Mode Select (BKGD/MS)

Figure 3-3 depicts the connection to the BKGD/MS pin when in-circuit debug capability is desired.

In this configuration, the background header also takes control of the RESETB line. This could result in 
parasitic capacitance from the BDM connector and its ribbon cable that may increase RESETB settling 
time. This situation must be considered in the user’s implementation.
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Chapter 4  Operational Phases and Modes of Operation

4.1 Modes of Operation
The V1 ColdFire core supports RUN, HALT, RESET and STOP modes natively. These are present on any 
ColdFire-based product. The MCU integration adds additional controls to STOP mode, effectively 
creating three modes where one existed previously.

The set of modes then becomes:

RUN The CPU executes instructions in this mode that can be further subdivided into 
User and Supervisor modes.

HALT Version 1 ColdFire Core HALT/DEBUG mode

RESET Reset asserted. Circuitry in default state. RESET can be divided into several 
phases of operation. For details, see Chapter 11, “System Integration Module 
(SIM)”.

STOPFC STOP – Clock in Fast Mode – Nominally used for A (See Section 4.2.1.)

STOPSC STOP – Clock in Low Speed Mode – Nominally used for I (See Section 
4.2.1.)

STOPNC STOP – No clocks – All clocks disabled. Nominally used for the SLEEP phase.

4.2 Frame Structure
In addition to the modes above, the MMA955xL is designed to facilitate a “frame-based” software 
scheduler. Analog sensor conversions are best executed when the CPU is quiet and there may be times 
when both AFE and CPU are dormant. The MMA955xL includes hardware mechanisms to make it easy 
to schedule these different functions.

4.2.1 Overview

The MMA955xL can be programmed to take a continuous sequence of evenly spaced samples over time. 
This section specifies the terms for timing and phases. Figure 4-1, Figure 4-2 and Figure 4-3 illustrate a 
number of these terms that will be subsequently defined.

Timing is defined in terms of “frames.” There are two types of frames: Sample and non-sample. Sample 
frames include an analog phase in which sensor outputs are sampled. Non-sample frames simply omit the 
analog phase.

Output Data Rate (ODR), Frame Rate (FR) and Sample Data Rate (SDR) are three important terms that 
will be used throughout the following text.

ODR <= SDR <= FR
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The ODR specifies the rate at which an application reads sensor data from the device. The actual SDR is 
ODR x OSR, where the integer OSR (Over Sample Ratio) is typically in the range of 1 to 4. As a result, 
several sample frames might be required to support a single sensor reading by the application.

Additionally, non-sample frames, may be intermixed with sample frames.
 

Figure 4-1. Sample Frame Timing

Figure 4-2. Non-Sample Frame Timing

Figure 4-3. Mixed Frame Timing

4.2.2 Definitions
Frame Rate (FR) This is the basic unit of time from which all other events are timed.

Output Data Rate (ODR) The rate at which the MMA955xL provides conversion data to the 
user for a given quantity. This will be SDR/OSR.

Over-Sample Ratio (OSR) The MMA955xL can support on-chip filtering of sensor data. The 
over-sample ratio specifies how many sample frames are required to 
support a specified output data rate using a desired filtering 
algorithm.
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tD tI
Digital processing completed. 
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A Analog phase – All analog (C2V and ADC) processing occurs here. 
Depending on configuration data, the analog subsystem may have 
processed samples for three dimensions of acceleration and a single 
auxiliary parameter, during each A interval. The auxiliary 
parameters available include temperature and the external ADC 
inputs. The CPU and associated peripherals are normally “quiet” 
during this mode.

D Digital phase – The CPU and peripherals are active, analog in 
low-power state. Digital filtering and processing of the converted 
ADC values occurs here. The length of this phase will vary 
depending upon the CPU load. It cannot exceed (tF - tA) for sample 
frames.

I Inactive or Idle phase – Most of the device is powered down for 
minimal power consumption. This phase is of variable length (tF - tA 
- tD), where tF is fixed, tA is determined by the analog front end 
(AFE) and tD varies depending on CPU loading.

Sample Frame Sample frames correspond, one-to-one, for each “sample” of data. 

Sample Data Rate (SDR) The rate at which the MMA955xL requires raw conversion data 
from its sensors and converters. If the device is configured for 
additional over-sampling, this may be some integer times the output 
data rate or ODR. One sample frame = SDR-1 seconds.

tA Length of A 

tD Length of D 

tI Length of I – The idle phase. This may approach zero, depending 
on CPU loading.

tF Frame interval. This is equal to 1/FR.

4.2.3 Additional Timing Parameters

Additional terms that occasionally factor into the discussions include:

Fosc-high The high-speed frequency of the on-chip oscillator. This is nominally 8 MHz.

Fosc-low The low-speed frequency of the on-chip oscillator. This is nominally 
Fosc-high/128.

Posc-high The length of time required for one cycle of the oscillator clock in high-speed 
mode (= 1/Fosc-high).

Posc-low The length of time required for one cycle of the oscillator clock in low-speed 
mode (= 1/Fosc-low = 128/Fosc-high).
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4.2.4 Phase Triggers

Figure 11-1 “Major SIM Interactions” illustrates some of the major interactions between modules in this 
device: 

• The “start-of-frame” signal is generated by the frame interval counter.

• SIM hardware is responsible for generating phase triggers for A and D.

• The “End A” signal is generated by the AFE.

• In sample frames, “Start A” results from the start-of-frame from the CLKGEN module. In this 
case, “Start D” results from the “End A” signal.

• For non-sample frames, the “start-of-frame” results in “start D”.

• “A started” and “D started” signals (not shown) can be slightly delayed from “start A” and 
“start D”. In the event that the system clock is switching from off (or low speed) to high speed, 
these signals are not asserted until the oscillator actually switches. The difference in the two sets 
of triggers is any latency associated with interrupt assertion and/or CLKGEN-mode switching.

Figure 4-4 illustrates sequencing of the “Start A“and “Start ” hardware triggers. Figure 4-5 shows that 
a STOP instruction (with STOPCR[SC] = 1) is required to transition into the idle phase. (See the SIM 
register map.)

Figure 4-4. Phase Triggers Required in Hardware

Figure 4-5. Phase Triggers Required in Software

In summary:

Start of frame Initiates “start A” or “start D,” depending on whether the frame is a 
sample frame or not.

Start A Signal to initiate A

End A Is generated by the AFE and indicates the analog phase has been completed.

Start D Signal to initiate D. This signal results from either “start of frame” or “End 
A”.

First sample frame

A

Second sample frame Third sample frame

A AD DID I

Start D Start DStart DStart A Start A Start A

First sample frame

A

Second sample frame Third sample frame

A AD DID I

STOP(SC) STOP(SC) STOP(SC)
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A started A has been initiated and the clock is in high-speed mode.

D started D has been initiated and the clock is in high-speed mode.

4.3 Clock Operation as a Function of Mode/Phase
Figure 4-6 illustrates the nominal phases of operation for this device. The values of A, D and I were 
discussed briefly in Section 4.2. The reset operation is described in Section 11.2. The sleep phase is defined 
as the device oscillator being off and all circuitry in its lowest power state.

Section 4.4 maps these phases into modes of operation of the Version 1 Coldfire CPU.

There is a strong software component to the application phases diagrammed here. They may be rearranged 
from time to time depending on the tasks assigned to the sensor. Tasks scheduling will be handled by the 
Scheduler Application (ID 0x01) as described in the MMA955xL Software Reference Manual.

Figure 4-6. Operational Phases

The phases shown above have distinct characteristics with regard to clock operation. These are outlined in 
Table 4-1. The operation of clock-gating registers (PCERUNx, PCESSCx and PCESFCx) in the SIM do 
not change as a result of debug operation, only the oscillator operation.
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4.4 Power Control Modes of Operation
The Version 1 ColdFire architecture incorporates several modes of operation. These include Reset, Run, 
Stop and Halt (debug).  A,  I and Sleep phases in Figure 4-6 are all mapped into the ColdFire STOP mode 
on this device. The CPU has only a single view of STOP operation, but at the device level, additional levels 
of distinction have been added:

STOPFC STOP – Clock in Fast Mode. Nominally used for A.

STOPSC STOP – Clock in Low Speed Mode. Nominally used for I.

STOPNC STOP – All clocks disabled. Nominally used for the SLEEP phase.

Boot and  D are functionally identical and map into the Run mode. Figure 4-7 adds HALT mode to the 
set and remaps the collection as a full-state transition diagram, including debug modes. Table 4-2 
summarizes the triggers that cause transitions from one mode to the next.

Table 4-1. Clock Operation Per Phase

Phase
CPU and Standard Peripherals Analog Front End

Slave I2C
Normal Debug1

1 The ENBDM bit in the Version 1 ColdFire Extended Configuration/Status Register (XCSR) is set to “1” to enable BDM 
communications. The CPU is clocked even during STOP modes. Frequency-hopping is disabled in Debug mode, as BDM 
communications require a constant clock rate for proper operation.

Normal Debug1

Reset High Speed Not applicable. The I2C is 
externally clocked.

Boot and 
D (Run 
Mode)

High Speed OFF High Speed

A
(STOPFC)

OFF High Speed

I
(STOPSC)

OFF, oscillator in 
Low-Speed Mode

High Speed OFF, oscillator in 
Low-peed Mode

High Speed

SLEEP
(STOPNC)

Oscillator in 
shutdown

High Speed  Oscillator in 
shutdown

High Speed
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Figure 4-7. Allowable State Transitions
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Table 4-2. State Transitions

Transition # From To Trigger1

1 Interrupts are subject to the limitations discussed in Section 11.5, “Clock Gating” and Section 11.7.4, “Peripheral Clock Enable 
Registers”.

1 RUN STOPSC XCSR[ENBDM] = 0, STOPCR[SC] = 1; followed by STOP instruction

STOPSC RUN Any interrupt

2 RUN STOPFC STOPCR[FC] = 1, followed by STOP instruction; OR
XCSR[ENBDM] =1, followed by STOP instruction (STOPSC and 
STOPNC are emulated by STOPFC in debug mode.)

STOPFC RUN Any interrupt

3 RUN HALT When a BACKGROUND command is received through the BKGD/MS 
pin OR when a HALT instruction is executed OR when encountering a 
BDM breakpoint.

HALT RUN GO instruction issued via BDM

4 RESET RUN De-assert all reset sources. Internal de-assert is subject to timing 
sequences outlined in Section 11.2, “Reset Generation”.

5 RUN STOPNC XCSR[ENBDM] = 0, STOPCR[NC] = 1, followed by STOP instruction

STOPNC RUN Any interrupt

6 RESET HALT BDM = 0 during POR (device must be unsecure)

7 STOPSC STOPFC Start of frame signal with STOPCR[A_EN] = 1

8 STOPFC HALT When a BACKGROUND command is received through the BKGD/MS 
pin (XCSR[ENBDM] must equal one)

9 STOPSC HALT In debug mode, STOPSC is emulated by STOPFC.
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Chapter 5  Memory Maps

5.1 High Level Memory Map

Table 5-1. V1 ColdFire Memory Maps

Address Range Generic V1 ColdFire Memory Usage Address Range MMA955xL Memory Usage

0x(00)00_0000

Allocated to on-chip flash memory

0x(00)00_0000

16 KB flash memory

0x(00)00_3FFF

0x(00)00_4000

Unimplemented

0x(00)2F_FFFF 0x(00)2F_FFFF

0x(00)30_0000

Allocated to on-chip ROM

0x(00)30_0000

4 KB ROM

0x(00)3F_FFFF 0x(00)30_FFFF

0x(00)40_0000

Optional off-chip expansion

0x(00)30_0800

Unimplemented

0x(00)7F_FFFF 0x(00)7F_FFFF

0x(00)80_0000

Allocated to on-chip RAM 

0x(00)80_0000

2 KB RAM

0x(00)9F_FFFF 0x(00)80_07FF

0x(00)A0_0000

Optional off-chip expansion

0x(00)80_0800

Unimplemented

0x(00)BF_FFFF 0x(00)BF_FFFF

0x(00)C0_0000

ColdFire Rapid GPIO

0x(00)C0_0000

ColdFire Rapid GPIO

0x(00)C0_000F 0x(00)C0_000F

0x(00)C0_0010

Unimplemented

0x(00)C0_0010

Unimplemented

0x(FF)FF_7FFF 0x(FF)FF_7FFF

0x(FF)FF_8000

Slave peripherals

0x(FF)FF_8000

Slave peripherals

0x(FF)FF_FFFF 0x(FF)FF_FFFF
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The left-most map in Table 5-1 is the generic, high-level, memory map applicable to the V1 ColdFire 
family. Memory map areas shown for RAM, ROM and flash are a superset for the family. Lesser amounts 
of all three will usually be included on specific devices. The memory map for the MMA955xL is shown 
on the right.

The slave peripherals section of the memory map is further broken down as shown in Table 5-2. 
MMA955xL microcontrollers include off-platform, 8-bit and 16-bit peripheral buses. The bus bridges 
from the ColdFire system bus to off-platform buses are capable of serializing 32-bit accesses into two 
16-bit accesses or four 8-bit accesses. This can be used to speed access to properly aligned peripheral 
registers. Not all peripheral registers are aligned to take advantage of this feature. 

The off-platform 8- and 16-bit interfaces operate at the same speed as the CPU. 

CPU accesses to those parts of the memory map marked as “Unimplemented” in Table 5-1 result in an 
illegal address reset if CPUCR[ARD] = 0 or an address error exception if CPUCR[ARD] = 1.

The lower 32 KB of flash memory (16 KB in MMA955xL) and slave peripherals section of the memory 
map are most efficiently accessed using the ColdFire absolute, short-addressing mode. RAM is most 
efficiently accessed using the A5-relative addressing mode (address register indirect with displacement 
mode).

Table 5-2. High Level Peripheral Memory Map

Peripheral Description Instance Name
Native Bus 

Width
Base Address

RGPIO Rapid General-Purpose I/O RGPIO 16 0x(00)C0_0000

Slave I2C Slave I2C SI2C 8 0x(FF)FF_8000

IIC Inter-Integrated IC MI2C 8 0x(FF)FF_8040

SIM System Integration Module SIM 8 0x(FF)FF_8060

CLKGEN CLKGEN CK 8 0x(FF)FF_8080

MTIM16 16-Bit Modulo Timer MTIM 8 0x(FF)FF_80A0

IRQ External Interrupt Module IRQ 8 0x(FF)FF_80C
0

Port Control Module Port I/O Control Module 0 PT0 8 0x(FF)FF_80E0

Port Control Module Port I/O Control Module 1 PT1 8 0x(FF)FF_8100

TPM Two-Channel, Timer/Pulse-Width 
Modulator

TPM 8 0x(FF)FF_8120

PDB Programmable Delay Block PDB 16 0x(FF)FF_EC0
0

Flash Controller Flash Controller FC 16 N/A1

1 The FC registers are only available under Superviser mode.

AFE Analog Front End AFE 16 N/A2

2 The AFE registers are only available under Superviser mode.

INTC V1 ColdFire Interrupt Controller INTC 8 0x(FF)FF_FFC
03

3 The INTC_FRC register is the first in the INC memory map, and is located at the base address + $10, or (FF)FF_FFD0.
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5.2 Alignment Issues
ColdFire has a big endian byte addressable memory architecture, so the most-significant byte of each 
address is the lowest-numbered one, as shown in Figure 5-1. Multi-byte operands (such as 16-bit words 
and 32-bit long-words) are referenced using an address pointing to the most-significant (first) byte.

Regions within the memory map are subject to restrictions with regard to the types of CPU accesses 
allowed. These are outlined in Table 5-3. Non-supported access types terminate the bus cycle with an error 
and would typically generate a system reset in response to the error termination.

31 24 23 16 15 8 7 0

Longword 0x(00)00_0000

Word 0x(00)00_0000 Word 0x(00)00_0002

Byte 0x(00)00_0000 Byte 0x(00)00_0001 Byte 0x(00)00_0002 Byte 0x(00)00_0003

Longword 0x(00)00_0004

Word 0x(00)00_0004 Word 0x(00)00_0006

Byte 0x(00)00_0004 Byte 0x(00)00_0005 Byte 0x(00)00_0006 Byte 0x(00)00_0007

. 

Longword 0x(FF)FF_FFFC

Word 0x(FF)FF_FFFC Word 0x(FF)FF_FFFE

Byte 0x(FF)FF_FFFC Byte 0x(FF)FF_FFFD Byte 0x(FF)FF_FFFE Byte 0x(FF)FF_FFFF

Figure 5-1. ColdFire Memory Organization

Table 5-3. V1 ColdFire Memory Maps

Base Address Region
Read Write

Byte Word Long Byte Word Long

0x(00)00_0000 Flash x x x — — x

0x(00)30_0000 ROM x x x — — —

0x(00)80_0000 RAM x x x x x x

0x(00)C0_0000 Rapid GPIO x x x x x x

0x(FF)FF_8000 8-bit Peripherals1

1 Allowed access types are peripheral-specific. The peripheral bus bridge will serialize 16- and 32-bit accesses into multiple 
8-bit accesses. When using 8-bit peripherals, care must be taken to ensure that all accesses are properly aligned and only 
desired 8-bit locations are accessed. 

x x x x x x

0x(FF)FF_EC00 16-bit Peripherals2 — x x — x x

.........
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5.3 Memory Mapped Components

5.3.1 Interrupt Controller

The CF1_INTC register map is sparsely populated, but retains compatibility with earlier ColdFire 
interrupt-controller definitions. The CF1_INTC occupies the upper 64 bytes of the 4-GB address space 
and all memory locations are accessed as 8-bit (byte) operands. This 64-byte space includes the 
program-visible interrupt controller registers as well as the space used for interrupt-acknowledge (IACK) 
cycles. 

Table 5-15 is a summary of CF1_INTC user-accessible peripheral registers and control bits. Cells that are 
not associated with named bits are shaded. A shaded cell with a 0 indicates this unused bit is always read 
as a 0. Shaded cells with dashes indicate unused or reserved bit locations that could be read as 1s or 0s. 
When writing to these bits, write a 0 unless otherwise specified.

5.3.2 Nonvolatile Register Area

There is a nonvolatile register area consisting of a block of 4 bytes in flash memory at 
0x(00)00_3FFB–0x(00)00_3FFF. The byte at 0x(00)00_3FFF is allocated to flash protection and security 
functions. Additionally, the byte at 0x(00)00_3FFE is used to initialize boot options for the device. See 
Section 6.8, “Security” for further details on both topics.

Because the nonvolatile register locations are flash memory, they must be erased and programmed like 
other flash memory locations.

5.3.3 RGPIO

The section of memory at 0x(00)C0_0000 is assigned for use by the ColdFire Rapid GPIO module. See 
Table 5-4 for the Rapid GPIO memory map and Chapter 15, “Rapid GPIO (RGPIO)” for further details on 
the module.

2 Allowed access types are peripheral-specific. The peripheral bus bridge will serialize 32-bit accesses into multiple 16-bit 
accesses. When using 16-bit peripherals, care must be taken to ensure that all accesses are properly aligned and only desired 
16-bit locations are accessed. 
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5.4 Detailed Register Set
The following tables summarize register-bit fields for on-chip peripherals. For further details, see the 
chapters on peripherals.

Table 5-4. Rapid GPIO (RGPIO) Detailed Memory Map

Address Register Bit 15/7 14/6 13/5 12/4 11/3 10/2 9/1 Bit 8/0

(00)C0_0000 RGPIO_DIR DIR[15:8] (Read/Write)

DIR[7:0] (Read/Write)

(00)C0_0002 RGPIO_DATA DATA[15:8] (Read/Write)

DATA[7:0] (Read/Write)

(00)C0_0004 RGPIO_ENB ENB[15:8] (Read/Write)

ENB[7:0] (Read/Write)

(00)C0_0006 RGPIO_CLR CLR[15:8] (Write only)

CLR[7:0] (Write only)

(00)C0_0006 RGPIO_DATA DATA[15:8] (Read only)

DATA[7:0] (Read only)

(00)C0_0008 RGPIO_DIR DIR[15:8] (Read only)

DIR[7:0] (Read only)

(00)C0_000A RGPIO_SET SET[15:8] (Write only)

SET[7:0] (Write only)

(00)C0_000A RGPIO_DATA DATA[15:8] (Read only)

DATA[7:0] (Read only)

(00)C0_000C RGPIO_DIR DIR[15:8] (Read only)

DIR[7:0] (Read only)

(00)C0_000E RGPIO_TOG TOG[15:8] (Write only)

TOG[15:0] (Write only)

(00)C0_000E RGPIO_DATA DATA[15:8] (Read only)

DATA[7:0] (Read only)

Table 5-5. Slave Port Detailed Memory Map

Address Register Bit 7 6 5 4 3 2 1 Bit 0

(FF)FF_8000 SP_MB0 DATA

(FF)FF_8001 SP_MB1 DATA

(FF)FF_8002 SP_MB2 DATA

(FF)FF_8003 SP_MB3 DATA

(FF)FF_8004 SP_MB4 DATA

(FF)FF_8005 SP_MB5 DATA

(FF)FF_8006 SP_MB6 DATA

(FF)FF_8007 SP_MB7 DATA

(FF)FF_8008 SP_MB8 DATA

(FF)FF_8009 SP_MB9 DATA

(FF)FF_800A SP_MB10 DATA
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(FF)FF_800B SP_MB11 DATA

(FF)FF_800C SP_MB12 DATA

(FF)FF_800D SP_MB13 DATA

(FF)FF_800E SP_MB14 DATA

(FF)FF_800F SP_MB15 DATA

(FF)FF_8010 SP_MB16 DATA

(FF)FF_8011 SP_MB17 DATA

(FF)FF_8012 SP_MB18 DATA

(FF)FF_8013 SP_MB19 DATA

(FF)FF_8014 SP_MB20 DATA

(FF)FF_8015 SP_MB21 DATA

(FF)FF_8016 SP_MB22 DATA

(FF)FF_8017 SP_MB23 DATA

(FF)FF_8018 SP_MB24 DATA

(FF)FF_8019 SP_MB25 DATA

(FF)FF_801A SP_MB26 DATA

(FF)FF_801B SP_MB27 DATA

(FF)FF_801C SP_MB28 DATA

(FF)FF_801D SP_MB29 DATA

(FF)FF_801E SP_MB30 DATA

(FF)FF_801F SP_MB31 DATA

(FF)FF_8020 SP_MUTEX0 0 0 0 0 0 0 SSTS

(FF)FF_8021 SP_MUTEX1 0 0 0 0 0 0 SSTS

(FF)FF_8022 SP_ADDR 0 ADDR

(FF)FF_8023 SP_SCR EN PS ACTIVE CW RIE WIE WWUP

(FF)FF_8024 SP_WSTS0 D31 D30 D29 D28 D27 D26 D25 D24

(FF)FF_8025 SP_WSTS1 D23 D22 D21 D20 D19 D18 D17 D16

(FF)FF_8026 SP_WSTS2 D15 D14 D13 D12 D11 D10 D9 D8

(FF)FF_8027 SP_WSTS3 D7 D6 D5 D4 D3 D2 D1 D0

(FF)FF_8028 SP_RSTS0 D31 D30 D29 D28 D27 D26 D25 D24

(FF)FF_8029 SP_RSTS1 D23 D22 D21 D20 D19 D18 D17 D16

(FF)FF_802A SP_RSTS2 D15 D14 D13 D12 D11 D10 D9 D8

(FF)FF_802B SP_RSTS3 D7 D6 D5 D4 D3 D2 D1 D0

(FF)FF_802C SP_MTOR0 0 TOSTS EN MTE

(FF)FF_802D SP_MTOR1 0 TOSTS EN MTE

(FF)FF_802E SP_OIC 0 0 0 0 0 POL CLR SET_IN_O

Table 5-5. Slave Port Detailed Memory Map (continued)

Address Register Bit 7 6 5 4 3 2 1 Bit 0
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Table 5-6. Master I2C (MI2C) Detailed Memory Map

Address Register Bit 7 6 5 4 3 2 1 Bit 0

(FF)FF_8040 IIC_A1 AD7 AD6 AD5 AD4 AD3 AD2 AD1 0
(FF)FF_8041 IIC_F MULT ICR
(FF)FF_8042 IIC_C1 IICEN IICIE MST TX TXAK RSTA WUEN 0
(FF)FF_8043 IIC_S TCF IAAS BUSY ARBL 0 SRW IICIF RXAK
(FF)FF_8044 IIC_D DATA
(FF)FF_8045 IIC_C2 GCAEN ADEXT 0 0 0 AD10 AD9 AD8
(FF)FF_8046 IIC_FLT 0 0 0 FLT4 FLT3 FLT2 FLT1 FLT0

Table 5-7. System Integration Module (SIM) Detailed Memory Map

Address Register Bit 7 6 5 4 3 2 1 Bit 0

(FF)FF_8060 STOPCR 0 0 0 SIM_CLK
_EN

FC SC NC SCtoFC

(FF)FF_8061 FCSR 0 0 A_EN SFEIE FE SFDIE SF

(FF)FF_8062 RCSR 0 DR ASR SW ILOP ILAD PIN POR

(FF)FF_8063 SIM_TR TP1 TP0

(FF)FF_8064 PCESFC0 0 T2 T1 T0 IRQ AFE PCTRL FLSH

(FF)FF_8065 PCESFC1 0 0 0 0 0 0 MI2C SLAVE

(FF)FF_8066 PCESSC0 0 T2 T1 T0 IRQ AFE PCTRL FLSH

(FF)FF_8067 PCESSC1 0 0 0 0 0 0 MI2C SLAVE

(FF)FF_8068 PCERUN0 0 T2 T1 T0 IRQ AFE PCTRL FLSH

(FF)FF_8069 PCERUN1 0 0 0 0 0 0 MI2C SLAVE

(FF)FF_806A PMCR0 A9 A8 A7 A6 0 A4

(FF)FF_806B PMCR1 A3 A2 A1 A0

(FF)FF_806C PMCR2 0 0 0 0 0 0 A5

Table 5-8. CLKGEN Detailed Memory Map

Address Register Bit 7 6 5 4 3 2 1 Bit 0

(FF)FF_8080 CK_OSCTRL FCEN FFCEN FFSEN FLE

(FF)FF_8081 RESERVED RESERVED

(FF)FF_8082 RESERVED RESERVED

(FF)FF_8083 RESERVED RESERVED
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Table 5-9. 16-bit Modulo Timer (MTIM) Detailed Memory Map

Address Register Bit 7 6 5 4 3 2 1 Bit 0

(FF)FF_80A0 MTIM_SC TOF TOIE TRST TSTP 0 0 0 0

(FF)FF_80A1 MTIM_CLK 0 0 CLKS PS

(FF)FF_80A2 MTIM_CNTH CNTH

(FF)FF_80A3 MTIM_CNTL CNTL

(FF)FF_80A4 MTIM_MODH MODH

(FF)FF_80A5 MTIM_MODL MODL

Table 5-10. Interrupt (IRQ) Pin Detailed Memory Map

Address Register Bit 7 6 5 4 3 2 1 Bit 0

(FF)FF_80C0 IRQSC 0 IRQPDD IRQEDG IRQPE IRQF IRQACK IRQIE IRQMOD

Table 5-11. Port Control (PC0) Detailed Memory Map

Address Register Bit 7 6 5 4 3 2 1 Bit 0

(FF)FF_80E0 PC0_PE PE7 PE6 PE5 PE4 PE3 PE2 PE1 PE0

(FF)FF_80E1 PC0_SE SE7 SE6 SE5 SE4 SE3 SE2 SE1 SE0

(FF)FF_80E2 PC0_DS DS7 DS6 DS5 DS4 DS3 DS2 DS1 DS0

(FF)FF_80E3 PC0_IFE IFE7 IFE6 IFE5 IFE4 IFE3 IFE2 IFE1 IFE0

Table 5-12. Port Control (PC1) Detailed Memory Map

Address Register Bit 7 6 5 4 3 2 1 Bit 0

(FF)FF_8100 PC1_PE PE7 PE6 PE5 PE4 PE3 PE2 PE1 PE0

(FF)FF_8101 PC1_SE SE7 SE6 SE5 SE4 SE3 SE2 SE1 SE0

(FF)FF_8102 PC1_DS DS7 DS6 DS5 DS4 DS3 DS2 DS1 DS0

(FF)FF_8103 PC1_IFE IFE7 IFE6 IFE5 IFE4 IFE3 IFE2 IFE1 IFE0

Table 5-13. Two-Channel TPM Detailed Memory Map

Address Register Bit 7 6 5 4 3 2 1 Bit 0

(FF)FF_8120 TPM_SC TOF TOIE CPWMS CLKS PS

(FF)FF_8121 TPM_CNTH Bit 15 14 13 12 11 10 9 Bit 8

(FF)FF_8122 TPM_CNTL Bit 7 6 5 4 3 2 1 Bit 0

(FF)FF_8123 TPM_MODH Bit 15 14 13 12 11 10 9 Bit 8

(FF)FF_8124 TPM_MODL Bit 7 6 5 4 3 2 1 Bit 0

(FF)FF_8125 TPM_C0SC CH0F CH0IE MS0B MS0A ELS0B ELS0A 0 0

(FF)FF_8126 TPM_C0VH Bit 15 14 13 12 11 10 9 Bit 8

(FF)FF_8127 TPM_C0VL Bit 7 6 5 4 3 2 1 Bit 0

(FF)FF_8128 TPM_C1SC CH1F CH1IE MS1B MS1A ELS1B ELS1A 0 0

(FF)FF_8129 TPM_C1VH Bit 15 14 13 12 11 10 9 Bit 8

(FF)FF_812A TPM_C1VL Bit 7 6 5 4 3 2 1 Bit 0
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WARNING 
The Flash Controller registers may only be accessed when the CPU is in 
Supervisor mode.

WARNING
The AFE registers may only be accessed when the CPU is in Supervisor 
mode.

5.5 Interrupt Vector Table
Please see Chapter 19, “Interrupt Controller (CF1_INTC)” for details of the Interrupt-Controller 
operation. Table 5-16 summarizes the default vector map for this device.

Table 5-14. Programmable Delay Block (PDB) Detailed Memory Map

Address Register Bit 7 6 5 4 3 2 1 Bit 0

(FF)FF_EC00 PDB_SCR PRESCALER SB SA IENB IENA BOS[1]

BOS[0] AOS CONT SWTRIG TRIGSEL EN

(FF)FF_EC02 PDB_DELAYA DELAYA[15:8]

DELAYA[7:0]

(FF)FF_EC04 PDB_DELAYB DELAYB[15:8]

DELAYB[7:0]

(FF)FF_EC06 PDB_MOD MOD[15:8]

MOD[7:0]

(FF)FF_EC08 PDB_COUNT COUNT[15:8]

COUNT[7:0]

Table 5-15. Interrupt Controller (INTC) Detailed Memory Map

Address Register Bit 7 6 5 4 3 2 1 Bit 0

(FF)FF_FFD0 INTC_FRC 0 LVL1 LVL2 LVL3 LVL4 LVL5 LVL6 LVL7

(FF)FF_FFD8 INTC_PL6P7 0 0 REQN

(FF)FF_FFD9 INTC_PL6P6 0 0 REQN

(FF)FF_FFDB INTC_WCR ENB 0 0 0 0 MASK

(FF)FF_FFDE INTC_SFRC 0 0 SET

(FF)FF_FFDF INTC_CFRC 0 0 CLR

(FF)FF_FFE0 INTC_SWIACK 0 VECN

(FF)FF_FFE4 INTC_LVL1IACK 0 VECN

(FF)FF_FFE8 INTC_LVL2IACK 0 VECN

(FF)FF_FFEC INTC_LVL3IACK 0 VECN

(FF)FF_FFF0 INTC_LVL4IACK 0 VECN

(FF)FF_FFF4 INTC_LVL15ACK 0 VECN

(FF)FF_FFF8 INTC_LVL6IACK 0 VECN

(FF)FF_FFFC INTC_LVL7IACK 0 VECN
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Table 5-16. Interrupt Vector Table

Vector
Name

Vector 
Number(s)

Vector
Address

Offset

Interrupt 
Level

Priority
within 
Level

Stacked 
Program 
Counter

Assignment
Interrupt
Enable

Interrupt
Source

0 0 N/A — Initial supervisor stack 
pointer

1 0x004 N/A — Initial program counter

2–63 N/A — Reserved for internal CPU 
exceptions (see Table 22-6)

7 7-5 Reserved on This Chip

irq 64 0x100 7 mid Next IRQ IRQSC[IRQIE] IRQSC[IRQF]

frame_err 65 0x104 7 3 Next SIM Frame Error SIM_FCSR[SFEIE] SIM_FCSR[FE]

N/A 66 0x108 7 2 Next Expansion

N/A 67 0x10C 7 1 Next Expansion

6 7 Reserved for Remapped 
Vector #1

6 6 Reserved for Remapped 
Vector #2

N/A 68 0x110 6 5 Next Expansion

N/A 69 0x114 6 4 Next Expansion

tpm1ovf 70 0x118 6 3 Next TPM[OVRF] TPM1SC[TOIE] TPM1SC[TOF]

tpm1ch0 71 0x11C 6 2 Next TPM[CH0] TPM1C0SC[CH0IE] TPM1C0SC[CH0F]

tpm1ch1 72 0x120 6 1 Next TPM[CH1] TPM1C1SC[CH1IE] TPM1C1SC[CH1F]

N/A 73 0x124 5 7 Next Expansion

N/A 74 0x128 5 6 Next Expansion

mtim_ovfl 75 0x12C 5 5 Next MTIM Overflow MTIM_SC[TOIE] MTIM_SC[TOF]

pdb_a 76 0x130 5 4 Next Programmable Delay A PDB_CSR[IENA] PDB_CSR[SA]

pdb_b 77 0x134 5 3 Next Programmable Delay B PDB_CSR[IENB] PDB[SB]

N/A 78 0x138 5 2 Next Expansion

N/A 79 0x13C 5 1 Next Expansion

N/A 80 0x140 4 7 Next Expansion

N/A 81 0x144 4 6 Next Expansion

sp_wake 82 0x148 4 5 Next Slave Port Wake-up SP_SCR[WIE] Slave Port Write 
Status Registers

N/A 83 0x14C 4 4 Next Expansion

N/A 84 0x150 4 3 Next Expansion

N/A 85 0x154 4 2 Next Expansion

N/A 86 0x158 4 1 Next Expansion

N/A 87 0x15C 3 7 Next Expansion

N/A 88 0x160 3 6 Next Expansion

N/A 89 0x164 3 5 Next Expansion

sp_to_0 90 0x168 3 4 Next Mutex Zero Timeout SP_MTOR0[EN] SP_MTOR0[STS]

sp_to_1 91 0x16C 3 3 Next Mutex One Timeout SP_MTOR1[EN] SP_MTOR1[STS]

N/A 92 0x170 3 2 Next Expansion

N/A 93 0x174 3 1 Next Expansion

N/A 94 0x178 2 7 Next Expansion

start_of_frame 95 0x17C 2 6 Next Start of Frame (phase D) FCSR[SFDIE] FCSR[SF]

conversion_
complete

96 0x180 2 5 Next AFE Conversion Complete 
Interrupt

AFE_CSR[CCIEN] AFE_CSR[COCO]

N/A 97 0x184 2 4 Next Expansion

N/A 98 0x188 2 3 Next Expansion

N/A 99 0x18C 2 2 Next Expansion

N/A 100 0x190 2 1 Next Expansion
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Error exceptions arising from user-mode attempts to access supervisor-only memory and registers will 
result in a soft-reset of the device being performed by the “access error” exception handler specified at 
Vector #2 of the exception table.

5.6 RAM
This microcontroller includes 2 KB of static RAM. RAM is most efficiently accessed using the A5-relative 
addressing mode (address register indirect with displacement mode). Any single bit in this area can be 
accessed with the bit manipulation instructions (such as BCLR and BSET).

At power-on, the contents of RAM are uninitialized. RAM data is unaffected by any reset provided that 
the supply voltage does not drop below the minimum value for RAM retention (VRAM).

master_i2c 101 0x194 1 7 Next Master I2C Complete 1-byte transfer 
(TCF) Interrupt

Match of received calling 
address (IAAS) Interrupt
Arbitration Lost (ARBL) 

Interrupt
SMBus Timeout (SLTF) 

Interrupt

IICC1[IICIE]

N/A 102 0x198 1 6 Next Expansion

L7swi 103 0x19C 7 0 Next Level-7 Software Interrupt

L6swi 104 0x1A0 6 0 Next Level-6 Software Interrupt

L5swi 105 0x1A4 5 0 Next Level-5 Software Interrupt

L4swi 106 0x1A8 4 0 Next Level-4 Software Interrupt

L3swi 107 0x1AC 3 0 Next Level-3 Software Interrupt

L2swi 108 0x1B0 2 0 Next Level-2 Software Interrupt

L1swi 109 0x1B4 1 0 Next Level-1 Software Interrupt

N/A 110 0x1B8 1 5 Next Expansion

N/A 111 0x1BC 1 4 Next Expansion

N/A 112 0x1C0 1 3 Next Expansion

N/A 113 0x1C4 1 2 Next Expansion

N/A 114 0x1C8 1 1 Next Expansion

N/A 115 0x1CC N/A N/A Next Reserved on This Chip

N/A ... ... ... Next Reserved on This Chip

N/A 255 0x3FC N/A N/A Next Reserved on This Chip

Table 5-16. Interrupt Vector Table (continued)

Vector
Name

Vector 
Number(s)

Vector
Address

Offset

Interrupt 
Level

Priority
within 
Level

Stacked 
Program 
Counter

Assignment
Interrupt
Enable

Interrupt
Source
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Chapter 6  Flash Memory Controller

6.1 Introduction 
WARNING

Flash controller registers are available only from Supervisor mode. User 
access to flash functions is encapsulated via a set of ROM routines. The 
flash array can only be written in Supervisor mode. Violations to this, as 
well as the restrictions above, will result in an access-error exception.

6.1.1 Overview

The main flash memory array is intended primarily for program storage. In-circuit programming allows 
the operating program to be loaded into the flash memory after final assembly of the application product. 
It is possible to program the entire array through the single-wire, background-debug interface. 

Figure 6-1. Block Diagram
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Flash address and data values are communicated over system busses.   Flash controls are managed via 
registers mapped onto the IP-bus space. User access to program/erase functions is via dedicated ROM 
function calls. Direct access to flash controller registers is disallowed.

6.1.2 Features

Features of the on-chip flash memory include:

• 4K-deep by 32-bit main array (16 KB total)

• Page erase size = 512 bytes

• Security lockout

• Protection against accidental programming/erase operations

• Program, erase and mass-erase procedures can be performed using pre-programmed ROM 
routines.

6.2 Theory of Operation
Flash memory is nonvolatile and is ideal for single-supply applications allowing for field reprogramming 
with no need for external, high-voltage sources for programming or erase operations. Contents are retained 
for an extended period of time over 100 years under nominal conditions.

Contents of flash memory can be read randomly, just like RAM. Array read-access time is one bus cycle 
for bytes, aligned words and aligned double-words. Unlike random access memory, flash memory cannot 
simply be written with a desired value. It must first be “erased” and “programmed.” For flash memory, an 
erased bit reads 1 and a programmed bit reads 0. Once programmed to 0, a bit cell remains in that state 
until erased again. A bit cell cannot be “programmed” to change from 0 to 1.

It is not possible to read from flash memory while it is being erased or programmed.

Bit cells can be erased/programmed a finite number of times before data integrity issues begin to occur. 
Nevertheless minimum number of erase/program cycles can exceed 20,000 under nominal conditions. 

CAUTION
A flash block address must be in the erased state before being programmed. 
Cumulative programming of bits within a flash block address is not allowed 
except for status field updates required in EEPROM emulation applications.

The flash hard block has a number of control signals associated with programming and erase operations. 
These must be sequenced over time and in a specified manner in order to erase and subsequently program 
flash memory. Internally generated, high voltages are applied for specific periods of time which must not 
be exceeded.

The hardware wrapper for flash memory provides rudimentary interlocks and safeguards, as well as some 
strobe generation. Higher-level intelligence is provided via canned ROM routines for basic flash 
operations.

All program erase operations must be performed using ROM routines executed while the CPU is in 
Supervisor mode. A special trap function (call_trap) is supplied which places the CPU in the Supervisor 
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state, calls the appropriate ROM routine and then returns to User mode. For additional details, see 
Section 7.6, “User Callable ROM Functions”, Section 7.6.2, “RMF_FLASH_PROGRAM” and 
Section 7.6.3, “RMF_FLASH_ERASE”.

Any attempt to directly write any flash controller registers in normal mode of operation will result in 
generation of an access-error exception.

6.3 Modes of Operation
There are four user modes of operation for the flash controller: IDLE, READ, PROGRAM and ERASE. 
PROGRAM and ERASE modes will only be reached while CPU is in Supervisor state.

6.3.1 Flash IDLE

Whenever the flash is not accessed by the CPU, including during WAIT and STOP modes, it will be in this 
IDLE mode. The flash module will be in standby and consume minimal power.

6.3.2 Flash READ

The flash will be in READ mode when it is read by the CPU. However, when the flash is in either 
PROGRAM or ERASE mode, the flash module cannot be read. Any attempt to read data from flash will 
return undefined data.

6.3.3 Flash PROGRAM

In this mode, the flash array can be programmed 32 bits at a time. Individual data bits can be programmed 
from 1 to 0, but not from 0 to 1.

6.3.4 Flash ERASE

Flash memory can be erased one page (512 bytes) at a time or the entire main array can be erased in one 
mass-erase action.

The erase state of all data bits in the array is 1.

6.4 Memory Maps
The flash module is partitioned into two spaces in memory. The first is the array memory which contains 
the main flash array. The second area allows supervisor access to module registers and is mapped into the 
16-bit, IP-bus space. User access to the flash controller is via dedicated ROM functions. Direct user access 
to the controller register set is prohibited.

6.4.1 Array Memory Map

The main flash array is designed to support 16 KB of general program storage. Four bytes of this are 
reserved for use in storing non-volatile parameters.
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FOPT[7:0] is loaded from address 0x3FFF during each reset sequence.

The boot-to-flash flag (FOPT[FB]) is set to the inverse of Bit 5 of address 0x3FFE during the ROM 
boot process on power-on-reset.   Thus, if Bit 5 of 0x3FFE is set to “1,” the device will not boot to flash. 
As a consequence, a virgin device with erased flash will boot directly into the ROM command interpreter 
on power-up.

Similarly, the FOPT[9:8] bits are loaded from bits [1:0] of 0x3FFE during the POR boot sequence by the 
ROM bootloader.

6.4.2 Register Memory Map

Flash control registers are not available directly from User mode. Nevertheless, the FOPT register will be 
altered during POR and reset with the content of the upper two bytes of the main flash array. Flash 
functions can only be accessed via the ROM routines described in Chapter 7, “ROM”.

6.5 FLASH Registers and Control Bits
The last word of the flash array (at $3FFC) is reserved and should not be used by the application program. 
The least-significant byte of this location ($3FFF) is referred to as NVOPT. It contains bits that define flash 
security and write-protection levels.

 

The second least-significant byte of this location ($3FFE) is referred to as NVBOPT. It contains control 
bits that define whether or not a CRC check is run at boot time and whether the device boots to flash or 
not. Finally, the 16-bit CRC value is stored at 0x3FFC.

Table 6-1. Array Memory Map

Address Range Function

(00) 00_0000 - (00) 00_3FFB
15356 (16K - 4) bytes

General storage

(00) 00_3FFC - (00) 00_3FFF
4 bytes

Reserved for nonvolatile options (4 bytes)

Table 6-2. Register Memory Map

Register Name Function

FOPT Flash Options Register

Table 6-3. Reserved Locations in the Main Array

0x3FFC 0x3FFD 0x3FFE 0x3FFF

Identifier CRC[15:8] CRC[7:0] NVBOPT NVOPT

Used for Expected CRC to be computed 
over 0x0000 to 0x3FFB

FOPT[15:8]
The boot-to-flash flag (FOPT[FB]) is set to the 

inverse of Bit 5 of address 0x3FFE during the ROM 
boot process on power-on-reset. 

FOPT[10:8] are loaded from bits 2:0 of 0x3FFE 
during the ROM sequence.

FOPT[7:0]

FOPT[7:0] is 
loaded with 

NVOPT byte at 
reset.
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6.5.1 Flash Options Register (FOPT)

FOPT[7:0] is loaded from the last byte of the main array (NVOPT) during the reset sequence. Therefore 
all modifications to FOPT[7:0] are lost at the next reset. Permanent changes to FOPT[7:0] can only be done 
by modifying the flash data stored at NVOPT. 

To change the value in this register, erase and reprogram the NVOPT location in flash memory as usual 
and then issue a new MCU reset.

FOPT can only be read or modified when the CPU is in Supervisor mode.

 15 14 13 12 11 10 9 8

R RESERVED RESERVED BF RESERVED 0 MECFB CHECKB

W 0 0 0

POR1

1 The upper byte of FOPT is cleared only on power-on-reset.

0 0 0 0 0 0 0 0

7 6 5 4 3 2 1 0

R 1 1 PW PROTB 1 SSW SSC

W

Reset 1 1 1 1 1 1 1 0

This byte is loaded from nonvolatile location NVOPT in the cycles immediately after de-assertion of reset.

= Unimplemented or Reserved

This register can only be accessed while the processor is in Supervisor Mode.

Figure 6-2. Flash Options Register (FOPT)

Table 6-4. FOPT Field Descriptions

Field Description

15:14 RESERVED
Always write as “00.”

13
BF

Boot from flash
0 = Do not boot from flash.
1 = Boot from flash on next reset.
This is a simple R/W bit in the flash controller. This bit is initialized to the inverse of Bit 5 of flash location 
0x3FFE by the boot ROM on power-up. It is read by the ROM code in a later step of the reset process. 
The code value affects where control is ultimately transferred. 

12
RESERVED
Always write as “0.”

11 RESERVED
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10
MECFB

Mass Erase on CRC Failure — This bit field is used as a control bit for the ROM boot function. It is only 
applicable if CHECKB = 01 or 10. In those cases, if the CRC check fails and MECF=0, then the user portion of 
the flash memory will be erased.
1 = Do nothing.
0 = Erase the user portion of the main flash array.
This bit provides additional protection of customer code from hacker attempts to bypass security via “interrupted” 
erase operations.
This bit is initialized to Bit 2 of flash location 0x3FFE by the boot ROM on power-up. It is read by the ROM code 
in a later step of the reset process.

9:8
CHECKB

Perform Flash Checksum — This bit field is used as a control bit for the ROM boot function. It controls whether 
or not a flash checksum is computed and checked against expected results before transferring control to code 
executing in flash. This field is loaded from location 0x3FFE by the ROM bootloader on POR only. It can be 
modified via software and will affect operation during subsequent non-power-on reset sequences.
00 = Do not perform checksum.
01 = Perform checksum on POR only.
10 = Perform checksum on any reset.
11 = Do not perform checksum.

7:6 RESERVED

5
PW

PROTB Writeable — The PROTB bit can be written from software only when PW = 1. If PW = 0, it must first be 
reset to 1 before PROTB can be modified.

4
PROTB

Active Low Write Protect — Used to inhibit programming and erase operations.
0 Array is protected from unintentional program/erase operations.
1 Array is not protected from unintentional program/erase operations.
This bit can only be written when PW = 1.

3 RESERVED

2
SSW

Security State Writeable — The SSC bit field can be written from software only when SSW = 1. If SSW = 0, it 
must first be reset to one before SSC can be modified.

1:0
SSC

Security State Code — These bits determine the security state of the MCU. When the MCU is secure, the 
contents of flash memory cannot be accessed by instructions from any unsecure source including the 
background debug interface.
00 Unsecured
01 Unsecured
10 SECURE
11 Unsecured
These bits can only be written when SSW = 1. Security can be temporarily cleared by setting these bits to 11, 
however, they will be re-initialized from NVOPT on every reset. These bits are initialized from bits 1:0 of flash 
location 0x3FFF during each reset sequence.
These bits are initialized to 10 (Secure) by when the peripheral reset is asserted. The flash wrapper will almost 
immediate overwrite them as the module exits reset.

Table 6-4. FOPT Field Descriptions (continued)

Field Description
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6.6 Initialization Information

6.6.1 Factory

Devices are usually shipped with the lower portion of flash memory pre programmed with a sensor 
scheduler, trim algorithms and basic sensor functions included. The upper portion of the flash memory is 
normally shipped in an erased condition.

6.6.2 End User

The flash module can be read after the device has completed the reset operation. No special initialization 
procedure is required to initialize the module.

FOPT[7:0] is automatically loaded from NVOPT ($3FFF) during any reset sequence.

A user program may need to be programmed to the flash module before the device can be used in the 
targeted application. The following sections describe the programming and erase operation of the flash 
module.

In order to facilitate user, flash-area erase and program operations, Freescale will provide with the 
MMA955xL evaluation kit appropriate abstraction tools that will isolate the end user from the ROM 
routines.

6.7 Programming Model
All user access to the flash controller is via Freescale supplied ROM routines which are described in 
Chapter 7, “ROM”. Please note that interrupts are disabled when these functions execute and STOP mode 
operation is temporarily disabled. System clocks will remain in their high-speed states (8 MHz) during 
these operations.

For details of the ROM function for flash programming, see Section 7.6.2, “RMF_FLASH_PROGRAM”.

For details of the ROM function for flash erase, see Section 7.6.3, “RMF_FLASH_ERASE”.

The user can control the state of the FOPT[PROTB] bit via RMF_FLASH_PROTECT and 
RMF_FLASH_UNPROTECT. (See Section 7.6.4.)

Security can be temporarily suspended via RMF_FLASH_UNSECURE (See Section 7.6.5.)
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6.8 Security
This family of devices include circuitry to prevent unauthorized access to the contents of flash memory. 
When security is engaged, BDM control/communication with the CPU is extremely limited. Read/Write 
access via BDM is then limited to XCSR[31–24], CSR2[31–24].

It is possible to check STOP/HALT status of the CPU, enable BDM clocks, configure reset behavior and 
assert reset.

Security is engaged or disengaged based on the state of nonvolatile register bits shown in FOPT[SSC]. 
During the reset sequence, the contents in bits 7:0 of the nonvolatile location NVOPT ($3FFF) are copied 
from flash into bits 7:0 of the working FOPT register. A user engages security by programming the 
NVOPT location which can be done at the same time that the flash memory is programmed.

Notice the erased state (SSC = 11) makes the MCU unsecure. When SSC bits of NVOPT are programmed 
to SECURE (10), the next reset will engage security. In order to permanently disengage security, the 
NVOPT bits must be erased. Security can be disengaged by a software interrupt (SWI) that will switch the 
MMA955xL to Supervisor mode. The SWI should perform the following functions:

1. If necessary, set PROTB = 1.

2. Mass-erase the flash and verify that the contents have been erased.

3. Set SSC = 11, assuming verify passed.

4. Return.

Table 6-5. CPU Resources Available Via BDM In Secure Mode

Register Field Field Name R/W Function

XCSR[31] CPU_HALT R 1, if CPU is Halted

XCSR[30] CPU_STOP R 1, if CPU is in STOP mode

XCSR[29:27] CSTAT R BDM Command Status

XCSR[26] CLKSW R/W BDM Clock Select (no function on MMA955xL)

XCSR[25] SEC R/W Security Status (1 = Secured)

XCSR[24] ENBDM R/W Enable BDM (1 = BDM is enabled)

CSR2[31] PSTBP R PST Buffer Stop

CSR2[30] RESERVED N/A

CSR2[29] COPHR R/W COP halt after reset (no function on MMA955xL)

CSR2[28] IOPHR R/W Illegal Operation halt after reset

CSR2[27] IADHR R/W Illegal Address halt after reset

CSR2[26] RESERVED N/A

CSR2[25] BFHBR R/W BDM force halt on BDM reset

CSR2[24] BDFR W Background debug force reset
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NOTE
When the device boots up to normal operating mode—where MS pin is high 
during RESET and SSC programmed to SECURE (10)—flash security is 
engaged. In this state, all BDM communication is blocked and background 
debugging is not allowed.
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Chapter 7  ROM

7.1 Introduction
There are several classes of functions stored in ROM:

• A boot program, including ROM-based, slave-port command interpreter

• A collection of utilities that can be invoked via the ROM-based slave port interpreter

• ROM functions that are callable from user code using the call_trap() function

ROM code can only be executed when the CPU is in Supervisor mode. Any attempt to access the ROM 
while in User mode will result in a privilege violation exception. Error exceptions arising from User-mode 
attempts to access Supervisor-only resources will result in a reset of the device.

7.2 Boot ROM
The MMA955xL boots from a standard routine in ROM. This boot function (shown in Figure 7-1) is 
responsible for a number of initialization steps before transferring control to user code in flash memory. 
The ROM also contains a simple command interpreter capable of running a number of utility and test 
functions for programming and erasing flash memory, as well as a limited set of other functions.

Individual steps shown in Figure 7-1 are described in more detail in subsequent sections. One common 
theme is the use of the Flash Options Register (FOPT). This register is not visible to software operating in 
User mode on the ColdFire core. Normally, it is accessed only by supervisor code operating out of the 
on-chip ROM.

One of the functions of FOPT is to configure boot options for the device. These are normally fetched once 
at power-up from the locations 0x3FFE and 0x3FFF. FOPT bits control the security state of the device, 
such as whether or not a mass-erase operation is pending (required to clear device security) and whether 
the part is to boot to flash, RAM or the slave-port command interpreter. For a flash boot, the FOPT also 
controls whether a checksum is calculated prior to transferring control to flash and determines what is done 
if a checksum fails.

Because FOPT[15:8] is initialized only at power-up, it can be manipulated by the slave-port command 
interpreter and BDM to reconfigure device operation on subsequent reset operations.

For fielded applications, the normal control flow for the boot function is 1-2-3-4-9. (See Figure 7-1.) Other 
options are intended primarily for debug and development purposes.

7.2.1 Boot Step 1: RESET

Any hardware- or software-initiated reset will return the device to this phase. Hardware logic on the chip 
is returned to its default state.
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During this phase, the FOPT[7:0] (which includes the device’s security state) is reloaded from location 
0x3FFF in flash memory. If the reset is a result of a power-on sequence, FOPT[15:8] will be initialized to 
all 0s. These register bits are not affected by subsequent reset operations. They are used to coordinate boot 
and flash operations across reset sequences.

Figure 7-1. Flow Diagram for ROM Boot Routine

Reset
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initialize
command interpreter 

Load  config
params on POR only
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and FOPT[MECFB]==1.

The choice of I2C or SPI communication is determined by the state of the SSB pin during the boot process. 
Low = SPI, High = I2C.
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7.2.2 Boot Step 2: Load PC and SSP

The Version 1 ColdFire CPU will load the program counter and supervisor-stack pointer from the first two 
long-words in ROM. The program execution in ROM begins and start-up code initializes the status register 
to 0x2700 and sets the Vector Base Register (VBR) to point to the beginning of ROM (0x300000).

7.2.3 Boot Step 3: Load Configuration Parameters

Figure 7-2. Boot Step 3: Load Configuration Parameters

Subsequent to reset, configuration parameters are read from reserved locations in flash and are stored in 
specific fields of control registers in the memory map.

For power-up sequences only:

• FOPT[BF] is set to the inverse of Bit 5 of memory location 0x3FFE in flash. This bit controls 
whether or not control is transferred to flash in Step 5.

• The FOPT[MECFB,CHECKB] data is loaded from location 0x3FFFE in flash.
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7.2.4 Boot Steps 4 and 9: For Flash Boots, Jump to Flash

Figure 7-3. Boot-to-Flash and Associated Checks (Part 1)
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[See continuation in next figure.]
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If FOPT[BF]1 has been set, the boot code assumes that the flash is in a programmed state. The boot code 
checks FOPT[CHECKB] to determine if a CRC check needs to be run to confirm the flash image. If no 
check is needed or a check is run and succeeds, control is transferred to the address specified at location 
0x(00)00_0000 in flash memory.

The supervisor stack pointer is re-initialized to the address contained at location 0x(00)00_0004. The 
ColdFire Vector Base Register (VBR) is reset to 0x(00)00_0000. If FOPT[FB] has not been set, control is 
transferred to Step 5 (Initialize Command Interpreter). If the CRC check fails, and FOPT[MECFB] is set, 
the device will be subjected to Mass Erase of User Portion Flash. Control then is transferred to Step 5 
(Initialize Command Interpreter). For more details, see Section 7.2.5.

The “transfer control” block, above, transfers control to code located in flash memory by performing the 
following functions:

• Resets the Vector Base Register to 0x(00)00_0000

• Reloads the supervisor stack pointer from the value stored at 0x(00)00_0000 in flash

• Reloads the program counter from location 0x(00)00_0004

Figure 7-4. Boot-to-Flash and Associated Checks (Part 2)

7.2.5 Boot Step 5: Initialize Command Interpreter

This step initializes RAM variables and hardware configuration for use by the ROM command interpreter 
(Step 6).

The stack pointer is reset on each loop through the command interpreter.

1. This was initialized in Step 3 to the inverse of Bit 5 of flash location 0x(00)00_3FFE.
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7.2.6 Boot Step 6: Launch ROM Command Interpreter

This function continuously monitors the slave port for commands submitted serially via that port. The 
operation is single-threaded.

The port is monitored until a command is entered. An entered command is executed and the interpreter 
returns to the monitor loop. If, however, entered commands include a reset command, the state machine 
restarts at Step 1.

Commands are submitted and statuses returned via the slave-port mailbox registers. Related details are 
provided in Section 7.5.

RGPIO3/SDA1/SSB = LOW at start-up indicates that the SPI should be used as slave instead of I2C. This 
is a function of the application boot code, not of the hardware. The boot routine needs to read the RGPIO3 
input value and act accordingly.

7.3 Security and Rights Management

7.3.1 Access and Security Rules of Thumb
• PROTB protects against accidental programming/erasures by software running on-chip. It does not 

prevent mass-erase via BDM or slave port CI.

• The Page Release Register (PRR) allocates the pages of the flash array to be used by Freescale code 
and the end application. (See Section 7.4.2.2, “Page-Release Register (PRR)”.) Pages assigned to 
Freescale are protected from accidental erasure and can only be erased under tightly controlled 
conditions.

• Mass-erase operational requests supply a mask parameter of 0xFFFFFFFF.

• The following resources are restricted to use in Supervisor mode: 

— ROM code

— AFE registers

— Flash-controller registers

• Asserting security shuts down almost all access via the BDM and slave ports. The only supported 
operations in secure state are RESET, MASS ERASE and GET DEVICE INFO.

7.3.2 Security

Users may secure their code from prying eyes by writing a secure code to NVOPT in the flash array. When 
the part is subsequently reset, access to the BDM development port is disabled. In addition, ROM-based, 
slave-port access is severely restricted.

Security may be cleared by mass-erasing the device. This can be done via BDM by setting 
XCSR[ERASE]1 and resetting the device. The ROM boot code will then erase all application pages (PRR 
= 1)2 in flash memory, regardless of the setting of the flash-protection bit (FOPT[PROTB])3.

1. See “Extended Configuration/Status Register (XCSR)” on page 296.
2. See “Page-Release Register (PRR)” on page 68.
3. See “Flash Options Register (FOPT)” on page 55.
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Security may also be cleared by mass-erasing the part via the slave-port interface. In such cases (as is the 
case for software running on-chip), it is necessary first to set FOPT[PROTB] = 1 using the flash-unprotect 
function1.

If an attempt is made to read/write any on-chip memory while the device is in a secure state, the 
ROM-based, slave-port functions will fail and return a security violation.

7.4 Rights Management

7.4.1 Memory-Map Restrictions

This section describes generic techniques for managing user access to restricted functions.

The MMA955xL platform is designed to accommodate a varying mix of Freescale and third-party 
software. On-chip ROM is dedicated to Freescale use. The flash-memory array can be split between 
Freescale and third-party code.

7.4.2 Rights-Management Variables

Non-volatile parameters used for rights management are shown in Table 7-2.

7.4.2.1 Device ID (DID)

The Device ID provides a relatively unique identifier for any particular device. Freescale does not 
guarantee every unit to have a unique number. However, the field will vary from device to device. 

1. See “RMF_FLASH_PROTECT and RMF_FLASH_UNPROTECT” on page 95

Table 7-1. NVM Memory Allocations

Memory Size Freescale Third-Party Usage

ROM 4 KB X — Boot functions, ROM command interpreter, flash-controller 
functions, common utilities. ROM code can be accessed only 
when the CPU is in Supervisor mode.

Main Flash Array 16 KB X X There are 32 512-byte pages of flash memory.
Any of these can be assigned to either Freescale or 
third-party use. All content is visible in User mode.

Table 7-2. Variables used for Rights Management

Register Name Description Bits 31-24 Bits 23-16 Bits 15-8 Bits 7-0

DID Device ID ID[31:0]

PRR Page Release Register1

(Factory Settings)

1 Not available in User mode.

PE[31:0]
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7.4.2.2 Page-Release Register (PRR)

As previously mentioned, the main flash array on this device has 32 pages of 512 bytes each. User 
programming/erase access to these pages is controlled via a virtual “Page-Release Register.” The PRR is 
dynamically calculated by flash programming/erase firmware routines.

There is one page-enable (PE) bit in the PRR for each page.   If set to “0”, the page is allocated for 
Freescale use and will not be made available for customer programming. If set to “1”, the page is available 
for customer use. Bit 0 corresponds to the page beginning at address 0x(00)00_0000. Bit 31 corresponds 
to the page beginning at 0x(00)00_3E00.

7.4.2.3 Hardware Restrictions

The flash memory controller contains a non-volatile bit (FOPT[PROTB]) that can be used to protect flash 
memory from accidental programming/erase operations.

This bit is sourced from the NVOPT location in flash memory on reset. It can be temporarily switched in 
and out via software. Various mechanism for manipulating this value are described in the descriptions of 
the flash-access functions, later in this chapter.

7.5 ROM Command Interpreter

7.5.1 Callable Utilities

Functions available via the ROM Command Interpreter are summarized in Table 7-3. Section 7.5.2 
provides a general overview of the user model associated with these functions. Subsequent sections 
provide the details of the individual functions.

Even on secured devices, it is possible to return the device ID and revision numbers and to change the 
flash-protection status. The latter does not waive security at all. Before attempting to mass-erase a secured 
device via the ROM command interpreter, however, you must unprotect flash memory.

Table 7-3. Functions Callable Via ROM Interpreter

Command Description
5-bit 

command 
code

Secure Mode Operation Details

CI_DEV_INFO Return device information 0x00 Allowed Section 7.5.4

CI_READ_WRITE Read/write memory (including 
flash programming)

0x01 Operation not performed.
Security violation returned.

Section 7.5.5

CI_ERASE Erase flash memory (page and 
mass-erase)

0x02 Mass-erase only Section 7.5.6

CI_CRC Calculate CRC over memory 
range

0x04 Operation not performed.
Security violation returned.

Section 7.5.7

CI_RESET RESET 0x05 Allowed Section 7.5.8

CI_PROTECT Protect flash memory 0x07 Allowed Section 7.5.9
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7.5.2 Packet Transfers and Commands Overview

Most ROM-interpreter functions support transfer of two packets of information. One packet transfer is 
from the host to the slave, specifying the command to be executed and any required parameters. The 
second transfer is the response packet from the slave. The second transfer is optional in cases where the 
response carries only status information.

The Reset command has no return packet.

Mailbox registers on the MMA955xL transfer information to and from the command interpreter via the 
slave port. The following sections specify the function of each of the mailboxes on a per-command basis.

Many of the following sections includes one or more examples of how a specific command might be 
encoded in the data stream to and from a slave, I2C port. These examples use a consolidated table format 
to document I2C bit sequences.

These commands are easily mapped into standard I2C waveforms by noting use of the following notation:

S Start bit/Repeated start

A Acknowledge bit

NAK Not acknowledge bit

P Stop bit

In the “example” tables, later in this chapter, green-shaded table cells indicate the bits written by the slave. 
Unshaded bits are written by the master. Gray-shaded entries are non-existent, for formatting purposes 
only. Heavy borders around a table cell indicate those bits in the sequence that map to specific mailbox 
locations.

7.5.3 Common Error Codes

All CI response packets utilize the same set of common return codes in the most-significant nibble of 
Mailbox 1. Bit 8 is used as “Command Complete” or “COCO.” It is set to 0 when the command interpreter 
first recognizes the incoming command, then is set to 1 when the command is complete (with or without 
errors). COCO = 1 means that the command interpreter has done all it can with the command. Mailbox 1 
bits 6-4 hold any applicable error code.

CI_UNPROTECT Unprotect flash memory 0x08 Allowed Section 7.5.9

All other command codes return the RMF_ERROR_COMMAND code (bad command).

Table 7-3. Functions Callable Via ROM Interpreter

Command Description
5-bit 

command 
code

Secure Mode Operation Details
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7.5.4 CI_DEV_INFO

This function returns the 32-bit device ID, along with ROM, flash and chip version numbers.

The Error Field of the Response Packet also returns a status code indicating whether or not the device is 
secure.

7.5.4.1 CI_DEV_INFO Command Packet Format

The five-bit command code for the read/write command is 0x00.The extension bits are 0.
 

Table 7-4. Common CI Error Codes

Error Name
Error = 
Bits 6:4

Mailbox 1 
MS Nibble

Description

PENDING 0x0 - 0x7 0x0 - 0x7 The command is still being executed.

RMF_ERROR_NONE 000 0x8 Command completed with no errors

RMF_ERROR_PARAM 001 0x9 An input parameter did not pass muster. Examples include:
incorrect MEM field supplied in CI read/write packet and erase 
password does not match RMF_ENABLE_FLASH_ERASE.

RMF_ERROR_PROT 010 0xA Returned when an attempt is made to program or erase flash while 
flash protection is active (FOPT[PROTB] = 0). Call the CI function to 
unprotect flash before attempting to program/erase the flash.

RMF_ERROR_
SECURITY

011 0xB Most CI commands are unavailable when security has been set 
(FOPT[SSC] = 10). This error code will be returned when an attempt 
has been made to execute a prohibited function.

RMF_ERROR_VERIFY 100 0xC Returned as a result of a PROGRAM or ERASE command if the 
final results of the operation do not match expected values. (ERASE 
values are all Fs. PROGRAM values are the input values.) 
The address offset of the first found error will be returned in 
mailboxes 2 and 3. This error only occurs when the VERF bit is set 
in the command byte.

RMF_ERROR_RIGHTS 101 0xD Indicates that the user does not have access rights to perform a 
function, such as attempting to write to ROM.

RMF_ERROR_RANGE 110 0xE Generally applicable to cases where an input parameter is not within 
an expected range of values. For example, a write command that 
attempts to program flash memory across physical rows of the 
device.

RMF_ERROR_
COMMAND

111 0xF This code is returned when the command interpreter does not 
recognize a command code or an incomplete packet is recognized.

Table 7-5. CI_DEV_INFO Command Packet Format at Mailbox Level

Mailbox # Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Command byte 0 0 0 0 0 0 0 0

1 Parameter byte 0 0 0 0 0 0 0 0
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7.5.4.2 CI_DEV_INFO Response Packet Format

The first byte of the response packet contains the command packet previously sent.

The second byte is a general status byte. COCO is set to 1 when the command response is complete. The 
ERR field will be set to RMF_ERROR_SECURITY (0x3) if the device is in a secure state. This should be 
treated as a status indicator, not an error, as other packet information will be correct, regardless of security 
setting.

Additional mailboxes return:

• 32-bit device ID

• ROM software version number (ROM_MAJOR.ROM_MINOR)

• Freescale flash-based software version number (FT_FLASH_MAJOR.FT_FLASH_MINOR)

• Hardware version number (HW_MAJOR.HW_MINOR)

2-31 NOT USED NOT USED

Table 7-6. CI_DEF_INFO Response Packet Format at Mailbox Level

Mailbox # Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Command byte 0 0 0 0 0 0 0 0

1 Status byte COCO ERR 0 0 0 0

2 ID MSB ID[31:24]

3 ID MSB+1 ID[23:16]

4 ID MSB+2 ID[15:8]

5 ID LSB ID[7:0]

6 ROM Major Version 
Number

ROM_MAJOR

7 ROM Minor Version 
Number

ROM_MINOR

8 Freescale Flash Code
Major Version Number

FT_FLASH_MAJOR

9 Freescale Flash Code
Minor Version Number

FT_FLASH_MINOR

10 Sensor Major Version 
Number

HW_MAJOR

11 Sensor Minor Version 
Number

HW_MINOR

12 0xFFFF 1 1 1 1 1 1 1 1

13 RESERVED 1 1 1 1 1 1 1 1

Table 7-5. CI_DEV_INFO Command Packet Format at Mailbox Level (continued)

Mailbox # Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
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7.5.4.3 Access/Security Policies for this Command

Table 7-7 details security policies for the CI Return Device Info command.
 

7.5.5 CI_READ_WRITE

7.5.5.1 Description

This function encapsulates all memory read/write functions, including those required for programming 
flash memory. Please note that flash memory must be erased prior to any program operation.

Memory mapped components, RAM, ROM and flash memory can be read/written with a common set of 
memory-access sequences. Read commands require eight mailbox locations. Write commands also require 
eight locations, but with an additional payload of 0 to 24 bytes of write data stored in mailboxes 8 through 
31.

Payload offsets map to on-chip addresses one-to-one. The first location accessed in the memory map 
corresponds to the value specified with the MEM and ADDR[15:0] parameters. Addresses are 
auto-incremented as the payload size increases.

NOTE
The 16-bit peripherals are restricted to word and long-word accesses on read 
and write. Flash is restricted to long words during programming sequences. 
The CI read/write commands are not responsible for checking that the 
packet structure has data packet sizes which are Modulo 2 or 4 for the 
various types. It is the responsibility of the user to make sure they are 
correct.

Read response packets are two mailboxes plus the payload in length. Write response packets consume four 
mailbox values.

14-31 NOT USED NOT USED

Table 7-7. Access/Security Policies for CI Return Device Info Command

Security Enabled Security Disabled

Available Available

Table 7-6. CI_DEF_INFO Response Packet Format at Mailbox Level (continued)

Mailbox # Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
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7.5.5.2 Read/Write Memory Command Packet Format

The five-bit command code for the read/write command is 0x01.

Table 7-8. Command Packet Format at Mailbox Level

Mailbox # Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Command byte 0 0 0 0 1 0 VERF TYPE

1 Parameter byte MEM NUMBER

2 Command interpreter 
password

CI_PW[31:24]

3 CI_PW[23:16]

4 CI_PW[15:8]

5 CI_PW[7:0]

6 Address bits [15:8] ADDR[15:8]

7 Address bits [7:0] ADDR[7:0]

8 - 31 Write data1

1 Not applicable to Read Operations

WDATA

Table 7-9. Command Field Descriptions

Field Description

VERF Verify Writes (not applicable in Read accesses)
0 = Do not verify.
1 = Verify that written value matches intent.

TYPE Type of Access
0 = Write
1 = Read

MEM Memory Space
000 = Flash memory
001 = ROM (Valid CI_PW match required.)
010 = RAM
011 = RGPIO
100 = 8-bit peripherals
101 = 16-bit peripheral (Valid CI_PW match required.)
All others are reserved.

NUMBER NUMBER
Number of bytes to read/write.
0 = NO-OP
1 to 28 for writes
1 to 30 for reads
Other values result in an error in the status packet.

CI_PW Command Interpreter Password
Certain restricted functions require a Freescale-supplied password to unlock access. The value of this 
parameter is ignored for non-restricted functions. See “Access/Security Policies for this Command” on page 75 
for details.
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7.5.5.3 Read/Write Memory Response Packet Format

There are two slightly different forms of the response packet. For reads:

• The first byte of the response packet contains the command packet previously sent.

• The second byte is a general status byte.

• Bytes 3 through 32 are optional and contain data read from the internal memory map of the device.

For writes:

• The first byte of the response packet contains the command packet previously sent.

• The second byte is a general status byte.

• Bytes 3 and 4 are optional and contain data the first address at which a Verify error was detected 
(if VERF has been set).

ADDR Address
The lower 16-bits of the first memory address to be accessed. The upper bits are implied by the MEM variable.

WDATA Write Data
The NUMBER of bytes of data to be transferred in write command. Flash program packets must contain 
payloads that are multiples of 4 bytes.

Table 7-10. Read Command Response Packet Format at Mailbox Level

Mailbox # Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Command byte 0 0 0 0 1 0 VERF TYPE

1 Status byte COCO ERR 0 0 0 0

2-31 Read data1

1 Not applicable to Write functions

RDATA

Table 7-11. Write Command Response Packet Format at Mailbox Level

Mailbox # Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Command byte 0 0 0 0 1 0 VERF TYPE

1 Status byte COCO ERR 0 0 0 0

2 Verify error addr MSB VERF_ERR_ADDR[15:8]

3 Verify error addr LSB VERF_ERR_ADDR[7:0]

Table 7-9. Command Field Descriptions (continued)

Field Description
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7.5.5.4 Access/Security Policies for this Command

Table 7-13 details security policies for the CI Read/Write command.

Policy descriptions are:

Subject to PRR Writes to flash memory are restricted to those in which the 
PRR[page number] bit is “1.” Flash protection must be disabled 
prior to any attempt at programming.

CI_PW match required A valid command interpreter password must be supplied.

Table 7-12. Command Response Field Descriptions

Field Description

VERF Verify Writes (not applicable in Read accesses)
0 = Do not verify 
1 = Verify that written value matches intent.
If a verify error is found, the address at which the first error is detected will be written to mailboxes 2 and 3.

TYPE Type of Access
0 = Write
1 = Read

COCO Command Complete
0 = Previous command not completed.
Because flash program sequences take quite some time to complete, you may need to repeatedly poll the 
port before the operation completes.
1 = Previous command has been completed or aborted.
(The ERR flag will be set for aborted sequences.)

ERR Error Flag
For the set of common CI error codes, see Table 7-4 on page 70.

RDATA Read Data
If ERR = 000, this is the NUMBER of bytes of data transferred in read command.
If ERR is any other value, the data contained in these bytes is not guaranteed.

VERF_ADDR Verify Address[15:0]
For write operations with verify, this is the lower 16 bits of the first location in which a verify error was 
detected.

Table 7-13. Access/Security Policies for CI Read/Write Memory Command

Security Enabled Security Disabled

Read Write Read Write

Main array of flash memory No access Allowed Subject to PRR

RAM No access Allowed

ROM No access CI_PW match 
required

Not allowed

16-bit peripherals No access CI_PW match required

8-bit peripherals and RGPIO No access Allowed
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7.5.5.5 Read/Write Memory Example

This example does the following:

• Reads 4 bytes from RAM

• Starts at location 0x(00)80_0008

• Uses the I2C slave port, mapped to location 0x03 on the I2C bus

The Read packet must write four mailbox registers in the slave port.

The response packet uses the I2C “combined format” that is described in Section 8.5.8, “Message Format 
for Reading MMA955xL”. This format combines a write (to establish the slave address and the first 
register address) and a read of the six mailbox registers to transfer the required data.

Table 7-14. Command to Read 4 Bytes from RAM Starting at Offset 0x08 for Device 3 on I2C Bus

Start/Stop 7 6 5 4 3 2 1 0

S Slave address = 0x03 R/W = 0 A

Register address = Mailbox #0 = 0x00 A

Mailbox 0 = READ command = 0x09 A

Mailbox 1 = “4 bytes from RAM” = 0x44 A

Mailbox 2 = CI_PW[31:24] A

Mailbox 3 = CI_PW[23:16] A

Mailbox 4 = CI_PW[15:8] A

Mailbox 5 = CP_PW[7:0] A

Mailbox 6 = MSB of starting address = 0x00 A

Mailbox 7 = LSB of starting address = 0x08 A

P

Table 7-15. Response to Previous Read Command on I2C Bus

Start/Stop 7 6 5 4 3 2 1 0

S Slave address = 0x03 R/W = 0 A

Register address= 0x00 A

S Slave address = 0x03 R/W = 1 A

Mailbox 0 = Read command = 0x09 A

Mailbox 1 = Status = 0x84 (command complete, read 4 bytes) A

Mailbox 2 = Data Byte from RAM Location (00)80_0008 A

Mailbox 3 = Data Byte from RAM Location (00)80_0009 A

Mailbox 4 = Data Byte from RAM Location (00)80_000A A
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7.5.6 CI_ERASE

7.5.6.1 Erase Flash Function Description

This function encapsulates all functions for page- and mass-erase actions of the flash memory.

The command packet is six mailboxes in length. The response packets are two to four mailboxes in length.

User requests for mass-erase will honor protection provided by the PRR. Only pages whose PRR bit is 1 
will be erased. Effectively, the mass-erase operation is translated on the fly to a series of page-erase 
operations.

Page-erase requests are not supported for secured devices. A mass-erase must be requested.

The same function call encapsulates both page- and mass-erase operations. The ROM software will use 
mass-erase when possible, page-erase when not.

7.5.6.2 Erase Command Packet Format

The five-bit command code for the read/write command is 0x02.

Mailbox 5 = Data byte from RAM location (00)80_000B NACK

P

Table 7-16. Command Packet Format at Mailbox Level

Mailbox # Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Command byte 0 0 0 1 0 0 VERF 0

1 Parameter byte PB = 0xC5

2 MASK MASK[31:24]

3 MASK [23:16]

4 MASK [15:8]

5 MASK [7:0]

6 - 31 NOT USED NOT USED

Table 7-15. Response to Previous Read Command on I2C Bus (continued)

Start/Stop 7 6 5 4 3 2 1 0
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7.5.6.3 Erase Command Response Packet Format

The first byte of the response packet contains the command packet previously sent.

The second byte is a general status byte.

Table 7-17. Command Field Descriptions

Field Description

VERF Verify Erase
0 = Do not verify 
1 = Verify that written value matches intent.
If a verify error is found, the address at which the first error is detected will be written to mailboxes 2 and 3.

PB PB
Constant value = 0xC5
Values other than 0xC5 will trigger a security error.

MASK Page Mask
The main flash array on this device is composed of 32 512-byte pages of memory. A page is the minimum amount of 
flash memory that can be erased in a single operation. The 32 bits of the mask variable correspond to pages 0 through 
31. Page MASK[0] corresponds to the page starting at 0x(00)00_0000. MASK[31] corresponds to the page starting at 
0x(00)00_3E00. For each page, these bits have the following function:
0 = Do not erase.
1 = Erase requested.
Erase operations are subject to usage rights previously established for the device. Some pages in flash memory may 
be dedicated to Freescale-developed code. Erase requests for those pages will normally be rejected. See 
“Page-Release Register (PRR)” on page 68 for additional details.
The Page Mask must be set to 0xFFFFFFFF for mass-erase requests. Other values will result in security violations if 
the device is secured. It is necessary to unprotect flash memory1 before attempting to erase it.

1 See “RMF_FLASH_PROTECT and RMF_FLASH_UNPROTECT” on page 95.

Table 7-18. Response Packet Format at Mailbox Level

Mailbox # Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Command byte 0 0 0 1 0 0 VERF 0

1 Status byte COCO ERR 0 0 0 0

2 Verify error addr MSB VERF_ERR_ADDR[15:8]

3 Verify error addr LSB VERF_ERR_ADDR[7:0]

4 - 31 Not Used Not Used
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7.5.6.4 Access/Security Policies for this Command

Table 7-20 details security policies for the CI Erase command.
 

Policy descriptions are:

Subject to PRR Erasures of flash memory are restricted to those in which the PRR[page 
number] bit is “1.” The flash protection must be disabled prior to any 
attempts to page-erase.

7.5.6.5 Erase Example

This example performs a mass-erase of the upper portion of the main array in flash memory.

The command packet must write six mailbox registers in the slave port.

Table 7-19. Command Field Descriptions

Field Description

VERF Verify Erase
0 = Do not verify.
1 = Verify that written value matches intent.
If a verify error is found, the address at which the first error is detected will be written to mailboxes 2 and 3.

COCO Command Complete
0 = Previous command not completed. Because the flash program sequences take quite some time to 
complete, you may need to repeatedly poll the port before the operation completes.
1 = Previous command has been completed or aborted. (The ERR flag will be set for aborted sequences.)

ERR Error Flag
See Table 7-4 on page 70 for the set of common CI error codes. Of those, the following error code 
interpretations apply to this device:
RMF_ERROR_SECURITY – The only erase operation allowed on a secured device is mass erase. 
RMF_ERROR_VERIFY – Some portion of the erasure was incomplete.
RMF_ERROR_PROT – FOPT[PROTB] needs to be reset to 1 before erase.

VERF_ADDR Verify Address[15:0]
This is the lower 16 bits of the first location in which a verify error was detected. This is only applicable if VERF 
is set and RMF_ERROR_VERIFY is returned in the ERR field.

Table 7-20. Access/Security Policies for CI Erase Flash Command

Security Enabled Security Disabled

Page Erase Mass Erase Page Erase Mass Erase

Upper portion of flash 
memory array1

1 The PRR bits for the upper portion of flash are all ones. This section is available for application use.

Not supported Erased when
(PB = 0xC5 and 

Mask=0xFFFFFFFF)

Subject to PRR Erased when 
(PB = 0xC5 and 

Mask=0xFFFFFFFF)
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The response packet uses the I2C “combined format” that is described in Section 8.5.8, “Message Format 
for Reading MMA955xL”. This format combines a write (to establish the slave address and first register 
address) and a read of mailbox registers to transfer the required data. Table 8-10 shows the case where only 
status information was retrieved. Diagnostic information in mailbox 2 and 3 was ignored.

  

7.5.7 CI_CRC

CodeWarrior has the ability to calculate a CRC over a range of code and include it as part of the flash or 
ROM image. This function replicates the same algorithm, which can be used to confirm code integrity over 
time.

The CRC function will fail with a security violation if the device has security enabled.

Table 7-21. Command to Mass Erase Flash on Device 3 on I2C Bus

Start/Stop 7 6 5 4 3 2 1 0

S Slave address = 0x03 R/W = 0 A

Register address = Mailbox 0 = 0x00 A

Mailbox 0 = Mass erase main array only command = 0x12 A

Mailbox 1 = Parameter byte = 0xC5 A

Mailbox 2 = 0xFF A

Mailbox 3 = 0xFF A

Mailbox 4 = 0xFF A

Mailbox 5 = 0xFF A

P

Table 7-22. Response to Previous Mass Erase Command on I2C Bus

Start/Stop 7 6 5 4 3 2 1 0

S Slave address = 0x03 R/W = 0 A

Register address= 0x00 A

S Slave address = 0x03 R/W = 1 A

Mailbox 0 = Mass erase main array only command = 0x12 A

Mailbox 1 = Status = 0x80 (command complete, no errors) NACK

P
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7.5.7.1 Checksum Command Packet Format

The 5-bit command code for the read/write command is 0x04. The command packet requires 8 mailboxes 
and is shown in Table 7-23.

7.5.7.2 CRC Response Packet Format

The response packet for the CRC calculation has a length of four mailboxes. These include:

• The first byte of the response packet, that contains the command packet previously sent.

• The second byte is a general status byte.

Table 7-23. Command Packet Format (RANGE=1, CS=1) at Mailbox Level

Mailbox # Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Command byte 0 0 1 0 0 0 0 0

1 Parameter byte MEM RESERVED

2 CRC Seed [15:8] SEED[15:8]

3 CRC seed [7:0] SEED[7:0]

4 Starting offset [15:8] OFFL[15:8]

5 Starting offset [7:0] OFFL[7:0]

6 Ending offset [15:8] OFFH[15:8]

7 Ending offset [7:0] OFFH[7:0]

8 - 31 NOT USED NOT USED

Table 7-24. Command Field Descriptions

Field Description

MEM Memory Space
000 = Flash memory
001 = ROM
010 = RAM
All others are reserved.

RESERVED Reserved Bit Field
Write as 0x00

SEED[15:0] CRC Seed Value
CRC calculations start with a known seed value. The recommended seed is 0x1D0F, although any value may be 
used.

OFFL[15:0] Low Address Offset
The base address of the memory + OFFL represents the first location in memory that will be accessed for the 
CRC calculation.

OFFH[15:0] High Address Offset
The base address of the memory + OFFH represents the last location in memory that will be accessed for the 
CRC calculation.
OFFH must be greater than OFFL.
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• Bytes 3 and 4 contain the signature calculated by the CRC function.

7.5.7.3 Access/Security Policies for this Command

Table 7-27 details security policies for the CI CRC command.
 

7.5.7.4 CRC Example

This example calculates a CRC across the entire range of the ROM.

The command packet must write eight mailbox registers in the slave port.

Table 7-25. Write Command Response Packet Format at Mailbox Level

Mailbox # Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Command byte 0 0 1 0 0 0 1 1

1 Status byte COCO ERR 0 0 0 0

2 MSB of signature SIG[15:8]

3 LSB of signature SIG[7:0]

Table 7-26. Command Field Descriptions

Field Description

COCO Command Complete
0 = Previous command not completed. Test sequences take quite some time to complete. You may need to 
repeatedly poll the port before the operation completes.
1 = Previous command has been completed or aborted. (The ERR flag will be set for aborted sequences.)

ERR Error Flag
For the set of common CI error codes, see Table 7-4 on page 70.

SIG Signature[15:0]
16-bit signature calculated by the CRC function.

Table 7-27. Access/Security Policies for CI CRC Command

Security Enabled Security Disabled

Not Available Available

Table 7-28. CI_CRC I2C Command Packet to Calculate the ROM CRC

Start/Stop 7 6 5 4 3 2 1 0

S Slave address = 0x03 R/W=0 A

Register address = Mailbox 0 = 0x00 A

Mailbox 0 = CRC command = 0x20 A

Mailbox 1 = Test ROM = 0x20 A

Mailbox 2 = MSB of Seed = 0x1D
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The minimum response packet uses the I2C “combined format”, which is described in Section 8.5.8, 
“Message Format for Reading MMA955xL”. (See “Slave Interface” on page 99.) This format combines a 
write (to establish the slave address and first register address) and a read of the six mailbox registers to 
transfer the required data.

7.5.8 CI_RESET

The Reset command configures FOPT[BF] to control flash/ROM Command Interpreter boot options and 
initiates a reset by writing RCSR[SW] = 1. Because a hardware reset results from this operation, the 
RESET command has no response packet unless an error is encountered. In cases of an error, the 
“standard,” two-mailbox response packet is generated.

Mailbox 3 = LSB of Seed = 0x0F

Mailbox 4 = 0x00

Mailbox 5 = 0x00

Mailbox 6 = 0x10

Mailbox 7 = 0x00

P

Table 7-29. Response to Previous Read Command on I2C bus

Start/Stop 7 6 5 4 3 2 1 0

S Slave address = 0x03 R/W = 0 A

Register address= 0x00 A

S Slave address = 0x03 R/W = 1 A

Mailbox 0 = CRC command = 0x20 A

Mailbox 1 = Status = 0x80 (command complete, no errors) A

Mailbox 2 = SIG[15:8] A

Mailbox 3 = SIG[7:0] NACK

P

Table 7-28. CI_CRC I2C Command Packet to Calculate the ROM CRC

Start/Stop 7 6 5 4 3 2 1 0
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7.5.8.1 Command Packet Format

The command packet requires two mailboxes.

The five-bit command code for the read/write command is 0x05.

The FL bit determines at what address the device boots on reset.

7.5.8.2 Response Packet Format

The response packet for the CI_RESET command has a length of 2 mailboxes. These include:

• The first byte of the response packet contains the command packet previously sent.

• The second byte is a general status byte.

The response packet is only available when an error condition is found. Otherwise the device resets itself.

In addition to the command byte parameters already described, the response packet includes standard 
COCO and ERR fields.

Table 7-30. CI_RESET Command Packet Format at Mailbox Level

Mailbox # Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Command byte 0 0 1 0 1 DR 0 FL

1 RESERVED 0 0 0 0 0 0 0 0

2 - 31 NOT USED NOT USED

Table 7-31. Reset Command Field Descriptions

Field Description

DR DRIVE
0 = Set RCSR[DR] = 0 – RESETB pin is input only.
1 = Set RCSR[DR] = 1 – RESETB pin is driven low on device reset.

FL Boot to Flash
0 = Do not boot to flash.
1 = Boot to flash.

Table 7-32. Reset Boot Options

FL Memory Base Address

0 ROM 0x(00) 30_0000

1 Flash 0x(00) 00_0000

Table 7-33. CI_RESET Command Response Packet Format at Mailbox Level

Mailbox # Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Command byte 0 0 1 0 1 DR 0 FL

1 Status byte COCO ERR 0 0 0 0
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7.5.8.3 Access/Security Policies for this Command

Table 7-35 details security policies for the CI_RESET command.

7.5.9 CI_PROTECT and CI_UNPROTECT

These complementary functions are used for toggling the state of the FOPT[PROTB] control bit. Flash 
programing/erase checks the status of this bit prior to undertaking any changes to the flash array. If 
FOPT[PROTB] = 0, the device is considered in a “protected” state and (except for BDM-initiated 
mass-erase) the flash memory will not be modified. Any calls to CI_READ_WRITE or CI_ERASE to 
modify the flash memory should be preceded by a call to CI_UNPROTECT and followed by a call to 
CI_PROTECT.

7.5.9.1 CI_PROTECT Command Packet Format

The five-bit command code for the CI_PROTECT command is 0x07 The extension bits are 0.
 

7.5.9.2 CI_UNPROTECT Command Packet Format

The five-bit command code for the CI_UNPROTECT command is 0x08. The extension bits are 0.
 

Table 7-34. CI_RESET Response Packet Field Descriptions

Field Description

COCO Command complete
0 = Command not complete
1 = Command complete

ERR Error Flag
For the set of common CI error codes, see Table 7-4 on page 70.

Table 7-35. Access/Security Policies for CI_RESET Command

Security Enabled Security Disabled

Available Available

Table 7-36. CI_PROTECT Command Packet Format at Mailbox Level

Mailbox # Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Command byte 0 0 1 1 1 0 0 0

1 Parameter byte 0 0 0 0 0 0 0 0

2-31 NOT USED NOT USED

Table 7-37. CI_PROTECT Command Packet Format at Mailbox Level

Mailbox # Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 Command byte 0 1 0 0 0 0 0 0

1 Parameter byte 0 0 0 0 0 0 0 0
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7.5.9.3 CI_PROTECT and CI_UNPROTECT Response Packets Format

The first byte of the response packet contains the command packet previously sent.

The second byte is a general status byte. COCO is set to 1 when the command response is complete.

7.5.9.4  Access/Security Policies for these Commands

Table 7-38 details security policies for the CI _PROTECT and CI_UNPROTECT commands.

7.6 User Callable ROM Functions
The primary function of the MMA955xL ROM is to provide a repository for flash programming/erase 
firmware and perform some basic management of device functions. A small number of ROM functions 
are accessible from user code. The process is illustrated in Figure 7-5.

2-31 NOT USED NOT USED

Table 7-38. Access/Security Policies for CI Return Device Info Command

Security Enabled Security Disabled

Available Available

Table 7-37. CI_PROTECT Command Packet Format at Mailbox Level

Mailbox # Description Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
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Figure 7-5. Call Hierarchy for ROM Functions
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All user-callable ROM functions are invoked via the call_trap() function. The C-prototype for this function 
is:
typedef union {
void * ptr;
unsigned long val;

} rmf_return_t;

rmf_return_t call_trap(unsigned short fid, void *ptr);

Input parameters are a function ID code (fid) and a void pointer which is internally recast to a structure 
type specific to the function being called.

There are 32 bits of data returned. Depending on the function, these may be a pointer to a structure or 
simply an unsigned long. When using the rmf_return_t C language data type, you will need to specify 
varName.ptr or varName.val, depending on which data type into which you need to cast the result.

It is possible to call ROM functions directly in assembler. An inspection of the call_trap() source code in 
the example below shows how this is done. Simply load register D0 with your function ID and A0 with 
your structure pointer. Then run the assembler “trap #0” instruction to transfer control to the supervisor 
routine associated with that instruction.

Your result will be returned in register A0.

Example: call_trap()
rmf_return_t call_trap(unsigned short fid, void *ptr)
{
rmf_return_t result;
asm {

move.w  fid,d0      // D0 contains function ID   (16 bits)
move.l  ptr,a0      // A0 contains pointer to structure  (32 bits)
trap #0
move.l  a0,result   // store in local 'result' variable

}
return result;

}

Only predefined, Freescale functions can be called via call_trap(). These are defined in Table 7-39.

Table 7-39. ROM Functions Callable via call_trap() 

Function ID Description Input/Output Structures Details

RMF_DEV_INFO Retrieve 32-bit device identifier In: NULL
Out: rmf_design_info_t

Section 7.6.1

RMF_FLASH_PROGRAM Program flash In: rmf_flash_prog_params_t
Out: rmf_flash_op_sts_t

Section 7.6.2

RMF_FLASH_ERASE Erase flash In: 
rmf_flash_erase_params_t

Out: rmf_flash_op_sts_t

Section 7.6.3

RMF_CRC Calculate a checksum over a range of 
memory.

In: rmf_crc_params_t
Out: rmf_crc_sts_t

Section 7.6.6 
and

Section 7.6.6.7
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Function details are provided in the following sub-sections.

RMF functions use the same error codes found earlier in the description of the ROM command interpreter. 
However, the function of the COCO bit is different. For RMF calls, COCO = 0 indicates that an error 
occurred. COCO = 1 indicates that the function completed properly.

RMF_CI Transfer Control to ROM-based 
command interpreter.

In: NULL
No return

—

RMF_FLASH_PROTECT Protect flash from accidental 
program/erase.

In: NULL
Out: NULL

Section 7.6.4

RMF_FLASH_UNPROTECT Enable program/erase. In: NULL
Out: NULL

Section 7.6.4

RMF_FLASH_UNSECURE Temporarily unsecure the device. In: NULL
Out: NULL

Section 7.6.5

Table 7-40. Common RMF Error Codes

Error Name
Error = 
Bits 6:4

Description

RMF_ERROR_PARAM 001 An input parameter did not pass muster. Examples include:
incorrect MEM field supplied in CI read/write packet and the erase password 
does not match RMF_ENABLE_FLASH_ERASE.

RMF_ERROR_PROT 010 Returned when an attempt is made to program or erase flash while flash 
protection is active (FOPT[PROTB]=0). Call the CI function to unprotect flash 
before any attempt to program/erase the flash.

RMF_ERROR_SECURITY 011 Most CI commands are unavailable when security has been set 
(FOPT[SSC]=10). This error code will be returned when an attempt has been 
made to execute a prohibited function.

RMF_ERROR_VERIFY 100 Returned as a result of a PROGRAM or ERASE command if the final results of 
the operation do not match expected values. (ERASE values are all Fs. 
PROGRAM values are the input values.)
The address offset of the first found error will be returned in mailboxes 2 and 3. 
This error only occurs when the VERF bit is set in the command byte.

RMF_ERROR_RIGHTS 101 The user does not have access rights to some feature. For example, writing to 
the ROM.

RMF_ERROR_RANGE 110 Generally applicable to cases where an input parameter is not within an 
expected range of values. An example would be a write command which 
attempted to program flash memory across physical rows of the device.

RMF_ERROR_COMMAND 111 This code is returned anytime that the command interpreter does not recognize 
a command code or when an incomplete packet is recognized.

Table 7-39. ROM Functions Callable via call_trap()  (continued)

Function ID Description Input/Output Structures Details
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7.6.1 RMF_GET_DEVICE_INFO

7.6.1.1 Description

This function returns the 32-bit device ID (DID). The device ID is a part of the “rights management” 
system described in Section 7.3. In addition to the device ID, this function also returns hardware and 
software version numbers.

Typically, a master controller will request this information of the MMA95XX as the first step in initiating 
an upgrade.

7.6.1.2 Input Structure Syntax

No parameters are necessary. Supply a NULL structure pointer to the call_trap() function when invoking 
this function.

7.6.1.3 Output Structure Syntax
typedef struct {
unsigned long id; 
char rom_major;
char rom_minor;
char ft_flash_major;
char ft_flash_minor;
char hw_major;
char hw_minor;

} rmf_device_info_t;

7.6.1.4  Error Codes

This function always succeeds. There are no error codes.

7.6.1.5 Operation

This function simply returns a number of values stored within the flash-information row.

Table 7-41. Return Parameters for RMF_GET_DEVICE_INFO

Variable Function

id 32-bit relatively unique identifier for this unit

rom_major Major version number for ROM software

rom_minor Minor version number for ROM software

ft_flash_major Major version number for Freescale flash content

ft_flash_minor Minor version number for Freescale flash content

hw_major Major version number for this device type

hw_minor Minor version number for this device type
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7.6.1.6 Access/Security Policies for RMF_GET_DEVICE_INFO

This function may be called at any time.

7.6.1.7 Example Use
rmf_device_info_t device_data;
device_data =  (call_trap(RMF_GET_NFO, NULL)).val;

7.6.2 RMF_FLASH_PROGRAM

7.6.2.1 Description

All user access to the flash-controller programming functions is via this function. Interrupts are disabled 
when this function executes and STOP-mode operation is temporarily disabled. System clocks will remain 
in their high-speed states (8 MHz) during program operations.

Because flash operations interfere with STOP-mode operation, their use is not consistent with normal 
sensor operation as described in Chapter 4, “Operational Phases and Modes of Operation”. Frame 
operation will need to be suspended during use of this function.

NOTE
The flash-controller hardware is not accessible outside of Supervisor mode. 
Accessing flash-controller hardware by a Supervisor-mode method other 
than this function (and companion functions, listed herein) is strongly 
discouraged.

Primary input attributes are an array of values to be programmed and the address at which the first value 
should be programmed in flash. Addresses are automatically incremented for each value in the input array.

7.6.2.2 Input Structure Syntax
typedef struct {
unsigned long pw;
unsigned long addr; .
unsigned short num_lwords;
unsigned short reserved; // Write as 0x0000; 
unsigned short reserved2; // Write as 0x0000; 
unsigned short verify;
unsigned long *data;

} rmf_flash_prog_params_t;
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7.6.2.3 Input Parameters

7.6.2.4 Output Structure Syntax
typedef struct {
unsigned short coco;        // Command complete (TRUE/FALSE)
unsigned short err;         // Error code, if any
unsigned long  *first_err;  // address of first error found in any verify operations

} rmf_flash_op_sts_t;

7.6.2.5 Output Parameters

7.6.2.6 Access/Security Policies for this Function

Flash program operations are allowed only on those pages in which the associated PRR1 bit is 1.

7.6.2.7 Example Use

This example attempts to write four, 32-bit long-words to flash memory starting at address 
0x(00)00_2000. After programming those words, the function will perform a verify operation and leave 
the flash in protected state2.

Table 7-42. rmf_flash_prog_params_t Parameters

Parameter Description

pw This is a constant password required to enable program operation. It is used only to limit the possibility of 
runaway code accidentally enabling this function. If any other value than 
RMF_ENABLE_FLASH_PROGRAM1 is used as the value for this parameter, the function will return with a 
failed status code.

1 Defined in rom_functions.h for this device. Required header files will be provided and described in a specific Application Note.

addr First address to be programmed. Because we are programming 4 bytes at a time, addr[1:0] must be 0.

num_lwords This is the number of 32-bit words to be programmed.

verify TRUE = Once program operation is complete, run a verification of programmed values.
FALSE = Do not run verify check.

data This is a pointer to an array of values to be programmed, starting at addr.

Table 7-43. rmf_flash_prog_params_t parameters

Parameter Description

COCO COmmand COmplete
TRUE if command completed without errors.
FALSE if command did not complete and/or errors were found. Check “err” field for details.

err Error Code
See Table 7-40 for possible values.

first_error Address of first error found in any verify operations.

1. See “Page-Release Register (PRR)” on page 68 for additional details.
2. Protection status only survives until the next reset, at which time it is reloaded from the NVOPT byte.
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static rmf_flash_prog_params_t pparams;
rmf_flash_op_sts_t *psts;
static unsigned long words[4] = {0x01234567, 0x89ABCDEF, 0x55555555, 0xCCCCCCCC};

pparams.pw = RMF_ENABLE_FLASH_PROGRAM;
pparams.addr = 0x00002000;
pparams.num_lwords = 4;
pparams.reserved = 0;
pparams.reserved2 = 0;
pparams.verify = TRUE;
pparams.data = words;
psts = (call_trap(RMF_FLASH_PROGRAM, &pparams)).ptr;

if (psts->coco == TRUE) {
// Proceed you like.
} else {
// Process errors from failed program operation

}

7.6.3 RMF_FLASH_ERASE

7.6.3.1 Description

All user access to the flash-controller erase functions (both page-erase and mass-erase) is via this function.    
Interrupts are disabled when this function executes and STOP-mode operation is temporarily disabled. 
System clocks will remain in their high speed states (8 MHz) during erase operations.

Because flash operations interfere with STOP-mode operation, their use is not consistent with normal 
sensor operation as described in Chapter 4, “Operational Phases and Modes of Operation”. Frame 
operation will need to be suspended during use of this function.

NOTE
The flash-controller hardware is not accessible outside of Supervisor mode. 
Accessing flash-controller hardware by a Supervisor-mode method other 
than this function (and companion functions, listed herein) is strongly 
discouraged.

This main flash array is composed of 32 pages of 512 bytes each. One page is the minimum amount of 
flash that can be erased. The primary input attribute to this function is a 32-bit, unsigned long used to 
identify pages to be erased or not. Bit 0 corresponds to the page beginning at address 0x(00)00_0000. Bit 
31 corresponds to the page beginning at 0x(00)00_3E00. Set each bit to “1” to protect it from erase or to 
“0” to erase.

Flash protection must be disabled prior to calling RMF_FLASH_ERASE. This is done by calling 
RMF_UNPROTECT. Once the erase operation is done, re-assert flash protection by calling 
RMF_PROTECT.
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7.6.3.2 Input Structure Syntax
typedef struct {
unsigned long pw;
unsigned long mask;
unsigned short verify;
unsigned short reserved;  // write as 0
unsigned short reserved2;  // write as 0
} rmf_flash_erase_params_t;

7.6.3.3 Input Parameters

7.6.3.4 Output Structure Syntax
typedef struct {
unsigned short coco;        // Command complete (TRUE/FALSE)
unsigned short err;         // Error code, if any
unsigned long  *first_err;  // address of first error found in any verify operations

} rmf_flash_op_sts_t;

7.6.3.5 Output Parameters

Table 7-44. rmf_flash_erase_params_t Parameters

Parameter Description

pw Password
This is a constant password required to enable program operation. It is used only to limit the possibility of 
runaway code accidentally enabling this function. If any other value than 
RMF_ENABLE_FLASH_ERASE1 is used as the value for this parameter, the function will return with a 
failed status code.

1 Defined in rom_functions.h for this device

mask Erase/Protect Mask
Bit 0 corresponds to the page beginning at address 0x(00)00_0000. Bit 31 corresponds to the page 
beginning at 0x(00)00_3E00. Set each bit to “0” to protect it from erase or to “1” to erase.
The mask parameter must be 0xFFFFFFFF for all mass-erase requests.
The mask value is ANDed with the PRR to determine what pages can be legally erased. If the ANDed value 
is anything less than 0xFFFFFFFF (the normal case in most applications), the request will be converted to 
a series of page-erase operations.

verify TRUE = Once program operation is complete, run a verification of the erased area is “all 1s”.
FALSE = Do not run verify check.

reserved Write as 0x0.

reserved2 Write as 0x0.

Table 7-45. rmf_flash_erase_params_t Parameters

Parameter Description

COCO COmmand COmplete
TRUE if command completed without errors.
FALSE if command did not complete and/or errors were found. Check “err” field for details.
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7.6.3.6 Access/Security Policies for this Function

Table 7-46 details security policies for RMF_FLASH_ERASE.
 

Subject to PRR Erase operations on flash memory are restricted to those in which the 
PRR[page number] bit is 1. See “Page-Release Register (PRR)” on 
page 68 for additional details.

7.6.3.7 Example Use

This example attempts to perform a mass erase of the main flash array.
static rmf_flash_erase_params_t eparams;
rmf_flash_op_sts_t *ests;

eparams.pw = RMF_ENABLE_FLASH_ERASE;
eparams.mask = 0xFFFFFFFF;   // mass erase
eparams.verify = TRUE;
eparams.reserved = 0;
eparams.reserved2 = 0;

ests = (call_trap(RMF_FLASH_ERASE, &eparams)).ptr; 

if (ests->coco == TRUE) {
// Program flash memory if you like.

} else {
// Process errors from failed erase operation

}

7.6.4 RMF_FLASH_PROTECT and RMF_FLASH_UNPROTECT

7.6.4.1 Description

These complementary functions allow temporary (until the next reset sequence) changes in the protection 
status of flash memory. Their sole function is to manipulate the protection functions in the flash options 
register (FOPT[PW, PROTB]) to their proper states.

err Error Code
0x0000 if no errors encountered. See Table 7-40 for additional values.

first_error Address of first error found in any verify operations

Table 7-46. Access/Security Policies for RMF_FLASH_ERASE

Main Flash Array

Security Enabled Security Disabled

Subject to PRR

Table 7-45. rmf_flash_erase_params_t Parameters (continued)

Parameter Description
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Separating changes in protection from programming/erase operations improves the odds against accidental 
programming/erasure of flash.

The NVOPT byte in the main flash array must be reprogrammed to effect any permanent change in the 
protection state of the part. See “Flash Options Register (FOPT)” on page 55 for additional details.

7.6.4.2 Input Structure Syntax

No parameters are necessary for either function. Supply a NULL structure pointer to the call_trap() 
function when invoking these functions.

7.6.4.3 Output Structure Syntax

These functions always succeed. They return a NULL pointer.

7.6.4.4 Access/Security Policies for RMF_FLASH_PROTECT/UNPROTECT

These functions may be called at any time.

7.6.4.5 Example Use
call_trap(RMF_FLASH_UNPROTECT, NULL);// unprotect flash
call_trap(RMF_FLASH_PROTECT, NULL);   // protect flash

7.6.5 RMF_FLASH_UNSECURE

7.6.5.1 Description

This function allows temporary (until the next reset sequence) changes in the security status of the device. 
Its sole function is to manipulate the security functions in the flash options register (FOPT[SSW, SSC]) to 
their proper states.

The NVOPT byte in the main flash array must be reprogrammed to effect any permanent change in the 
security state of the part. See “Security” on page 58 for additional details.

7.6.5.2 Input Structure Syntax

No parameters are necessary. Supply a NULL structure pointer to the call_trap() function when invoking 
this function.

7.6.5.3 Output Structure Syntax

This functions always succeeds. It returns a NULL pointer.

7.6.5.4 Access/Security Policies for RMF_FLASH_UNSECURE

This function may be called at any time.

External parties (slave port and BDM port) normally mass erase the device to clear security.
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7.6.5.5 Example Use

call_trap(RMF_FLASH_UNSECURE, NULL);// clear security until next reset operation

7.6.6 RMF_CRC

7.6.6.1 Description

The RMF_CRC function uses a Cyclic Redundancy Check (CRC) function to generate a CRC value over 
a specified range of memory. The 16-bit CRC-CCITT polynomial, x16 + x12 + x5 + 1, is used to generate 
the CRC code. 

Features of the CRC function include:

• CRC16-CCITT compliancy with x16 + x12 + x5 + 1 polynomial

• Error detection for all single, double, odd, and most multi-bit errors

• Programmable, initial-seed value

7.6.6.2 Input Structure Syntax
typedef struct {
unsigned long seed;
unsigned long starting_addr;
unsigned long ending_addr;
unsigned short reserved;  // write as 0
} rmf_crc_params_t;

7.6.6.3 Input Parameters

7.6.6.4 Output Structure Syntax
typedef struct {
unsigned short coco;
unsigned short sts;
unsigned long crc;  

} rmf_crc_sts_t;

Table 7-47. rmf_crc_params_t Parameters

Parameter Description

seed This is the “seed” for the CRC algorithm.

starting_addr Address of the first location in the memory map to be checked.

ending_addr Address of the last location in the memory map to be checked.

reserved Write as 0x0.
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7.6.6.5 Error Codes

This function always returns a value.

7.6.6.6 Example Use
rmf_crc_params_t crc_params;
rmf_crc_sts_t *crc_results;
unsigned long crc;
crc_params.seed = 0x1D0F;
crc_params.reserved = 0;
crc_params.starting_addr = 0x00000000;
crc_params.ending_addr   = 0x00003FFF;
crc_results = (call_trap(RMF_CRC, &crc_params)).ptr;
if (crc_results->sts == RMF_ERROR_NONE) {
crc = crc_results->crc;

}

7.6.6.7 Access/Security Policies for RMF_CRC

This function may be called at any time.
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Chapter 8  Slave Interface

8.1 Introduction
The MMA955xL MCU-based, motion-sensing platform from Freescale can communicate with a host 
processor using either I2C or SPI interfaces. Conceptually, the architecture of this generic device matches 
Figure 8-1. In order to limit the device pin count, some of those signals are actually muxed.

Figure 8-1. Combo Slave Port

Both SPI and I2C slave modules are on a separate clock domain from the rest of the device. They can be 
used during all modes of operation except deep sleep (STOPNC). In that case, they can provide a wake-up 
interrupt signal to exit that mode.

NOTE
The MMA955xL includes both interfaces. The selection of the operating 
mode between I2C and SPI is initialized at startup. If SSB (RGPIO3) is 
found to be low during the boot process, SPI mode will be programmed. For 
details, see Section 8.4.4, “Slave Port Status and Control Registers”.

Figure 8-2 shows typical connection of master/slave devices on an I2C bus. The two shared, external 
pull-up resistors are the only external components required for proper operation of the open-drain outputs.
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Figure 8-2. I2C Wired-AND/Open-Drain Bus

8.1.1 I2C Features

The I2C slave port includes these distinctive features:

• Compatible with I2C bus standard

• 32 general-purpose, eight-bit mailbox registers:

— Visible to both CPU and master of the slave I2C interface

— Can be programmed for any desired function

• 32-bit read buffer supports definition of 16- and 32-bit variables in the shared mailbox space

• Two hardware semaphores are available for strict management of data-coherency issues

• Write status registers enable easy tracking of writes by the I2C communications occuring 
independently of CPU mode. The module is externally clocked and can operate in all modes.

• Configurable I2C device address

• 2-Mbps maximum data-transfer rate

• Configurable wake-up behavior

• Register address auto-increments between accesses. It wraps from Mailbox #31 back to 
Mailbox #0.

8.1.2 I2C Limitations

This module offers a subset of the features available in the full standard. In particular, the module is subject 
to the following limitations:

• Seven-bit addressing only

• Maximum SCL frequency of operation equals 2 Mbps

• General call is not supported

Master/Slave #1

RP RP

Serial Data Line (SDA)

Serial Clock Line (SCL)

SCL_IN1 SDA_IN1

SCL_OUT1 SDA_OUT1

+VDD

Master/Slave #2

SCL_IN2 SDA_IN2

SCL_OUT2 SDA_OUT2

Master/Slave #3

SCL_IN3 SDA_IN3

SDA_OUT3



Slave Interface

MMA955xL Intelligent Motion-Sensing Platform, Rev. 0

Freescale Semiconductor, Inc. 101

• “Start Byte” is not supported

• Slave-only operation

• Input filters are not implemented

• Use of standard, digital-I/O impose loading limitations on the bus

Ignoring spike protection and hold-time differences, the I2C standard states that “the only difference 
between Hs-Mode slave devices and F/S-mode slave devices is the speed at which they operate.” Thus, 
the MMA955xL slave I2C port can be used with Hs-mode devices operating up to 2 Mbps.

8.1.3 SPI

The MMA955xL architecture also supports Serial Peripheral Interface (SPI) communication as a digital 
communication. The SPI is used for synchronous, serial communication between a master device and one 
or more slave devices. See Figure 8-3 for an example of how to configure one master with one 
MMA955xL device.

The MMA955xL is always operated as a slave device. Typically, the master device would be the host 
microcontroller which would drive the clock (SCLK) and chip-select (SSB) signals.

Figure 8-3. Dedicated Connection to SPI Host

The SPI interface consists of two control lines and two data lines: SSB, SCLK, SDI and SDO. The SSB 
pin, also known as “Slave Select” (active low), is the slave, device-enable mechanism which is controlled 
by the SPI master. SSB is driven low at the start of a transmission and driven high at the end of a 
transmission.
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SCLK is the SPI clock that is also controlled by the SPI master. SDI and SDO are the SPI Data Input and 
the SPI Data Output.

Figure 8-4 illustrates the standard mechanism by which a master controls two or more slave devices that 
share the SPI bus. In this scenario, the master uses two general-purpose I/O pins to signal which of the two 
slaves is enabled at any point in time.

Figure 8-4. Shared Connection to SPI Host

8.1.4 SPI Features
The SPI slave port includes these distinctive features:

• Compatible with SPI interfaces found on many microcontrollers
• 32 general-purpose, eight-bit mailbox registers:

— Visible to both CPU and master of the SPI master
— Can be programmed for any desired function

• 32-bit read buffer supports definition of 16- and 32-bit variables in the shared mailbox space
• Two hardware semaphores are available for strict management of data coherency issues
• Write status registers enable easy tracking of writes by the SPI communications occur 

independently of CPU mode. The module is externally clocked and can operate in all modes.
• 2-Mbps maximum data-transfer rate
• Configurable wake-up behavior
• Register address auto-increments between accesses. It wraps from Mailbox #31 back to 

Mailbox #0.
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8.1.5 SPI Limitations
• Fixed clock polarity: The SDI and SDO data lines are driven at the falling edge of the SCLK and 

should be captured at the rising edge of the SCLK.

• Clock phase is fixed (See “SPI Serial Protocol and Timing” on page 122).Data is shifted MSB first, 
LSB last.

• SSB should not be strobed between bytes of a multi-byte transfer.

• There is no explicit protocol checking. Invalid results may occur if an invalid sequence is received 
by the slave interface.

8.2 Module Memory Map
The slave-port module is organized as a memory-mapped peripheral on the eight-bit IP bus. Table 8-1 
specifies the module memory map. Details of each register are provided in the following section.

8.3 Data Coherency Issues
Mailbox registers are shared by the CPU and external master. Both CPU and external master have the 
ability to read and write these registers. By its nature, the I2C interface is based on a byte-wide protocol. 
This presents a number of challenges when dealing with shared 16- and 32-bit data.

Table 8-1. Module Memory Map

Register Name Offset Visibility Function

SP_MB0 $00 CPU/I2C Mailbox Register 0

SP_MB1 $01 CPU/I2C Mailbox Register 1

... ... ... ...

SP_MB30 $1E CPU/I2C Mailbox Register 30

SP_MB31 $1F CPU/I2C Mailbox Register 31

MUTEX0 $20 CPU/I2C Binary Semaphore (Mutex) Register 0

MUTEX1 $21 CPU/I2C Binary Semaphore (Mutex) Register 1

SP_ADDR $22 CPU only Slave I2C Address Register

SP_SCR $23 CPU only Slave Port Status and Control Register

SP_WSTS0 $24 CPU only Write Status Register 0

SP_WSTS1 $25 CPU only Write Status Register 1

SP_WSTS2 $26 CPU only Write Status Register 2

SP_WSTS3 $27 CPU only Write Status Register 3

SP_RSTS0 $28 CPU only Read Status Register 0

SP_RSTS1 $29 CPU only Read Status Register 1

SP_RSTS2 $2A CPU only Read Status Register 2

SP_RSTS3 $2B CPU only Read Status Register 3

SP_MTOR0 $2C CPU only Mutext Timeout Register 0

SP_MTOR1 $2D CPU only Mutext Timeout Register 2

SP_OIC $2E CPU only Output Interrupt Control Register
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For consistency, the SPI interface is designed to support a protocol similar to the I2C, as well as previous 
(non-MCU-based) Freescale sensors.

From the CPU’s perspective, the Version 1 ColdFire will automatically serialize one 16-bit access into two 
sequential byte accesses. It will also serialize one long word (32-bit) access into four byte-wide sequential 
accesses. Thus, four eight-bit registers can be written with a single 32-bit write instruction. Serialized 
accesses work best on addresses aligned to the size of the operand being written.

From the perspective of an external master, four sequential byte writes by the CPU happen quickly. 
Depending on the frequency of operation, the byte writes may take less time than a single bit in the I2C or 
SPI data stream. However it is easy to see that a problem could still occur if the master is reading byte 
number two of a four-byte variable when the CPU decides to update the variable. Bytes zero and one 
(already read by the master) would correspond to the two most-significant bytes of the previous value. 
Byte number three would correspond to the least-significant byte of the next value and byte number two 
could go either way, depending on precisely when the CPU write occurs with respect to the master read 
operation.

From an even broader perspective, how does the master know when it is OK to read or write a register that 
the CPU is updating on some regular basis?

The MMA955xL has two complementary mechanisms to address these problems:
1. A four-byte read buffer guarantees that naturally aligned two- and four-byte variables are 

self-consistent when read by the master.
2. Two binary semaphores (mutex operators) are available for applications requiring more rigorous 

control of shared resources.

8.3.1  Read Buffer
When any byte is read by the master, the entire four-byte region in which that byte resides will be cached 
in a four-byte, line buffer. Reads of subsequent bytes will be done from the buffer, ensuring that the master 
sees consistent data in multiple-byte variables.

This process is best seen by way of example. The Version 1 ColdFire CPU uses big-endian addressing. The 
user is encouraged to view the mailbox area as shown in Table 8-2. The four-byte read buffer can be used 
to make simultaneous reads of the mailboxes in any row of the table.

Table 8-2. Mailbox Memory Map

MSB Address MSB LSB

0x00 SP_MB0 SP_MB1 SP_MB2 SP_MB3

0x04 SP_MB4 SP_MB5 SP_MB6 SP_MB7

0x08 SP_MB8 SP_MB9 SP_MB10 SP_MB11

0x0C SP_MB12 SP_MB13 SP_MB14 SP_MB15

0x10 SP_MB16 SP_MB17 SP_MB18 SP_MB19

0x14 SP_MB20 SP_MB21 SP_MB22 SP_MB23

0x18 SP_MB24 SP_MB25 SP_MB26 SP_MB27

0x1C SP_MB28 SP_MB29 SP_MB30 SP_MB31
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An example of the legal allocation of variables to these locations is shown in Table 8-3.

In Table 8-3, variables 1, 2 and 3 are 32-bit variables. Variables 4 through 9 are 16-bit variables and 
variables 10 through 17 are eight-bit variables. All variables are guaranteed to have self-consistent values 
when read by the sensor master.

An invalid allocation of variables would have variables spanning rows as shown in Table 8-4.

Table 8-4 highlights the improperly aligned variables. Depending on when reads and writes occur, it is 
possible that the master and CPU would see inconsistent values.

The four-byte read buffer is cleared when an I2C STOP condition occurs or when the SPI SSB signal is 
deasserted, depending upon which port is in use. Contents are replaced whenever the register address 
increments from one row to the next.

8.3.2 Binary Semaphore (Mutex) Operation

The MMA955xL includes two semaphore registers that can be used by the CPU and system master to 
negotiate ownership of shared assets. These can be mailbox registers or any other shared item. These 
registers can be read by only one of the two parties at any point in time. Simultaneous attempts will be 
serialized by the module.

Each semaphore register has several possible actions associated with it, as shown in Table 8-5.

Table 8-3. Valid Mailbox Organization

MSB Address MSB LSB

0x00 Variable 1 (MSB) (MSB+1) (MSB+2) Variable 1 (LSB)

0x04 Variable 2 (MSB) (MSB+1) (MSB+2) Variable 2 (LSB)

0x08 Variable 3 (MSB) (MSB+1) (MSB+2) Variable 3 (LSB)

0x0C Variable 4 (MSB) (LSB) Variable 5 (MSB) (LSB)

0x10 Variable 6 (MSB) (LSB) Variable 7 (MSB) (LSB)

0x14 Variable 8 (MSB) (LSB) Variable 9 (MSB) (LSB)

0x18 Variable 10 Variable 11 Variable 12 Variable 13

0x1C Variable 14 Variable 15 Variable 16 Variable 17

Table 8-4. Invalid Mailbox Organization

MSB Address MSB LSB

0x00 Variable 1 (MSB) (LSB) Variable 2 (MSB) (MSB+1)

0x04 Variable 2 (MSB+2) (LSB) Variable 3 (MSB) (MSB+1)

0x08 Variable 3 (MSB+2) (LSB) Variable 4 (MSG) (LSB)

0x0C Variable 5 (MSB) (LSB) Variable 6 (MSB) (MSB+1)

0x10 Variable 6 (MSB+2) (LSB) Variable 7 (MSB) (LSB)

0x14 Variable 8 (MSB) (LSB) Variable 9 Variable 10 (MSB)

0x18 Variable 10 (LSB) Variable 11 Variable 12 Variable 13

0x1C Variable 14 Variable 15 Variable 16 Variable 17
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The actions in Table 8-5 are atomic, assuring that the CPU and master can unambiguously negotiate 
ownership of any asset.

Operation of the two semaphore registers is identical, allowing for simultaneous negotiations of two 
different sets of shared assets.

A classic problem with operation of semaphores occurs when the owner of a shared asset fails to relinquish 
control, resulting in a “lockout” situation. For this reason, each semaphore has an optional “time-out” 
register. If enabled, a countdown timer is initiated to the specified value whenever the semaphore is set. 
The counter then begins counting down. When it hits zero, an interrupt is issued. The CPU should then 
clear the semaphore.

Each timer is stopped whenever the associated semaphore is cleared.

8.4 Register Definitions

8.4.1 Mailbox Registers

Table 8-5. Semaphore Actions

Semaphore Content Action Side Effect

0x00 Read 0x00 Set semaphore = 1. Reader now has ownership of shared asset.

0x01 Read 0x01 None. Slave host has ownership of the semaphore.

0x02 Read 0x02 None. CPU has ownership of the semaphore.

0x00 Write any value (Normally, this is 
only done by the current owner)

Set semaphore = 0 - No action

0x01 or 0x02 Set semaphore = 0 - Ownership has been relinquished

SP_MB0 through SP_MB31 SP_BASE + 0x00 though 0x1F

7 6 5 4 3 2 1 0

R DATA[7:0]

W

Reset 0 0 0 0 0 0 0 0

Figure 8-5. Mailbox Register Format
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The slave port is the main communication channel between the system master and the MMA955xL. 
SP_MB0 through SP_MB31 are bidirectional mailboxes and can be software-configured to support any 
number of applications. Each mailbox can be read/written by both the CPU and the sensor master. Reads 
by both CPU and master are non-blocking and can occur simultaneously. CPU writes may be delayed a 
cycle to allow master writes time to complete.

Simultaneous writes represent a hazard condition. Developers are encouraged to restrict write 
access to either CPU or sensor master on a register-by-register basis.

The write status registers (SP_WSTS0, 1, 2, and 3) can be used to notify the CPU that the master has 
written to one or more mailbox registers. Whenever any of the mailbox registers has been written, the bit 
corresponding to that register in the SP_WSTSx registers will be set. The slave port can be configured to 
generate an interrupt when this occurs.

SP_MB31 and SP_MB15 can be programmed via the SP_SCL[WWUP] bits to operate as a special 
“wake-up” register that will wake the CPU from STOP mode when written. This operation can be extended 
to all of the SP_MBX registers or none, as desired.

8.4.2 Semaphore Registers

For additional information regarding operation of the semaphore registers, see Section 8.3.2. 
SP_MUXTEX0 and SP_MUXTEX1 are identical in form and operation.

SSTS Semaphore Status 

MUTEX0 and 1 SP_BASE + 0x20 and 0x21

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 SSTS

W

Reset 0 0 0 0 0 0 0 0

Figure 8-6. Mutex0 Register Format

Table 8-6. Semaphore Status Bit Descriptions

Bit Value Function

 Read 00 A 00 value returned in this field indicates that the reader now has ownership of the shared asset. STS will 
subsequently read as 01 or 10 until relinquished.

Read 01 A 01 in this field indicates that the semaphore has previously been claimed by the host controlling the slave port.

Read 10 A 10 in this field indicates that the semaphore has previously been claimed by the CPU.

Write A write of any value to this register sets STS to 0. There is no hardware lock to ensure that the current owner of 
the semaphore is the one to unlock it. It is the responsibility of the software to enforce this practice.
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8.4.3 Slave I2C Address Register

The seven-bit address for this port can be specified by writing to this register which should be configured 
in advance of any I2C traffic on the slave port unless the default value (0x4C) is used.

This register has no function when a SPI interface is used. In that case, the register is reserved.

8.4.4 Slave Port Status and Control Registers

EN Slave Port Enable

On devices that support only the of SPI or I2C interface, this register bit is read-only and fixed to the 
appropriate value as per Table 8-7.

This bit it initialized to 1 by the boot manager at startup.

EN should be switched high only when the slave port bus is known to be inactive.

PS Port Select 

SP_ADDR SP_BASE + 0x22

7 6 5 4 3 2 1 0

R 0 ADDR[6:0]

W

Reset 0 1 0 0 1 1 0 0

Figure 8-7. Slave I2C Address Register Format

SP_SCR SP_BASE + 0x23

7 6 5 4 3 2 1 0

R EN PS ACTIVE STOP_EN RIE WIE WUP

W CSR

Reset 0 0 0 0 0 0 0 0

Figure 8-8. Slave Port Status and Control Register Format

Table 8-7. Slave Port Enable Bit Descriptions

Bit Value Function

0 Slave port is not enabled. Use this only for the instance where this device has no host controller.

1 Either SPI or I2C slave port is enabled (based on choice of PS bit).

Table 8-8. Port Select Bit Descriptions

Bit Value Function

0 The I2C interface has been selected for use as slave port.

1 The SPI interface has been selected for use as slave port.
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On devices that support only the of SPI or I2C interface, this register bit is read-only and fixed to the 
appropriate value as per Table 8-8.

On the MMA955xL, the PS bit is initialized by the boot manager at startup. If SSB (RGPIO3) is found to 
be low during the boot process (immediately following any reset), the PS is set to 1 (SPI mode). Otherwise, 
I2C mode is assumed.

The PS bit can be changed at later times as long as the slave port is disabled.

NOTE
Normally, both EN and PS are “set and forget” controls. Indiscriminately 
switching between modes may result in loss of data unless extreme care is 
taken at the system level.

ACTIVE Slave port is active 

The function of this bit is dependent on the state of the PS bit as indicated in Table 8-9.

This bit is not applicable with EN is 0.

CSR Clear Read and Write Status Registers

This bit always reads as 0. Write a 1 to clear all four write status registers and all four read status registers.

STOP_EN Interrupt STOP Enable

Table 8-9. Slave Port Active Bit Descriptions

PS ACTIVE Function

0 0 The I2C finite state machine is in the SLEEP state.

0 1 The I2C port is active.

1 0 The SPI SSB input is high. The SPI is not in use.

1 1 The SPI SSB input is low (enabled) and the SPI is selected.

Table 8-10. Clear Read and Write Status Bit Descriptions

Bit Value Function

0 No action.

1 Clear SP_WSTS0, 1, 2 and 3 and SP_RSTS0, 1, 2 and 3.

Table 8-11. Interrupt STOP Enable Bit Descriptions

Bit Value Function

0 Interrupts are not enabled during STOP. Assertion of interrupts is deferred until the device exits STOP mode.

1 Interrupts are generated in STOP mode.
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RIE Read Interrupt Enable

The read status registers record master writes on a register-by-register basis. Write a 1 to the CSR bit to 
clear interrupts enabled by RIE.

WIE Write Interrupt Enable

The write status registers record master writes on a register-by-register basis. Write a 1 to the CSR bit to 
clear interrupts enabled by WIE.

WUP Wake-up Configuration

The ability of the write-interrupt function to interrupt the CPU is defined by the WUP bits, in conjunction 
with RIE, WIE and STOP_EN. This field is applicable only when RIE and/or WIE have been set to 1.   
Interrupts are deferred until STOP mode is exited if STOP_EN is equal to 0.

8.4.5 Write Status Registers

Table 8-12. Read Interrupt Enable Bit Descriptions

Bit Value Function

0 Read interrupt is not enabled.

1 Enable CPU interrupt when one or more of the SP_MBX registers have been read by the system master. Interrupt 
operation is further qualified by the WUP bits.

Table 8-13. Write Interrupt Enable Bit Descriptions

Bit Value Function

0 Write interrupt is not enabled.

1 Enable CPU interrupt when one or more of the SP_MBX registers have been written by the system master. 
Interrupt operation is further qualified by the WUP bits.

Table 8-14. Wake-Up Configuration Bit Descriptions

Bit Value Function

00 Generate interrupt (subject to RIE, WIE and STOP_EN) on any mailbox access. Interrupt generation occurs at 
the end of the packet transmission. Only one interrupt is generated, even if multiple mailboxes are accessed.

01 Generate interrupt (subject to RIE, WIE and STOP_EN) only on access to Mailbox 15. Interrupt generation occurs 
immediately upon completion of the access to Mailbox 15.

10 Generate interrupt (subject to RIE, WIE and STOP_EN) only on access to Mailbox 31.   Interrupt generation 
occurs immediately upon completion of the access to Mailbox 31.

11 Reserved

SP_WSTS0 SP_BASE + 0x24

7 6 5 4 3 2 1 0

R D31 D30 D29 D28 D27 D26 D25 D24

W

Reset 0 0 0 0 0 0 0 0

Figure 8-9. Write Status Register 0 Format
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The write status registers are used to track write activity by the system master on the slave bus. Each of 
the 32 bits in these registers corresponds to exactly one of the SP_MBX registers. D0 maps to SP_MB0, 
D1 to SP_MB1 and so forth. The “D” bits are set whenever the corresponding register is written by the 
system master.

Software running on the CPU can read these registers to determine which mailboxes have been updated 
by the master.

8.4.6 Read Status Registers

SP_WSTS1 SP_BASE + 0x25

7 6 5 4 3 2 1 0

R D23 D22 D21 D20 D19 D18 D17 D16

W

Reset 0 0 0 0 0 0 0 0

Figure 8-10. Write Status Register 1 Format

SP_WSTS2 SP_BASE + 0x26

7 6 5 4 3 2 1 0

R D15 D14 D13 D12 D11 D10 D9 D8

W

Reset 0 0 0 0 0 0 0 0

Figure 8-11. Write Status Register 2 Format

SP_WSTS3 SP_BASE + 0x27

7 6 5 4 3 2 1 0

R D7 D6 D5 D4 D3 D2 D1 D0

W

Reset 0 0 0 0 0 0 0 0

Figure 8-12. Write Status Register 3 Format

SP_RSTS0 SP_BASE + 0x28

7 6 5 4 3 2 1 0

R D31 D30 D29 D28 D27 D26 D25 D24

W

Reset 0 0 0 0 0 0 0 0

Figure 8-13. Read Status Register 0 Format
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The read status registers are used to track read activity by the system master on the slave bus. Each of the 
32 bits in these registers corresponds to exactly one of the SP_MBX registers. D0 maps to SP_MB0, D1 
to SP_MB1 and so forth. The “D” bits are set whenever the corresponding register is read by the system 
master. 

Software running on the CPU can read these registers to determine which mailboxes have been inspected 
by the master.

8.4.7 Mutext Timeout Registers

The two semaphores are equipped with identical timeout registers of the format shown below. SP_MTOR0 
controls time-out functions for Semaphore 0 and SP_MTOR1 controls time-out functions for Semaphore 
1.

SP_RSTS1 SP_BASE + 0x29

7 6 5 4 3 2 1 0

R D23 D22 D21 D20 D19 D18 D17 D16

W

Reset 0 0 0 0 0 0 0 0

Figure 8-14. Read Status Register 1 Format

SP_RSTS2 SP_BASE + 0x2A

7 6 5 4 3 2 1 0

R D15 D14 D13 D12 D11 D10 D9 D8

W

Reset 0 0 0 0 0 0 0 0

Figure 8-15. Read Status Register 2 Format

SP_RSTS3 SP_BASE + 0x2B

7 6 5 4 3 2 1 0

R D7 D6 D5 D4 D3 D2 D1 D0

W

Reset 0 0 0 0 0 0 0 0

Figure 8-16. Read Status Register 3 Format

SP_MTOR0 and SP_MTOR1 SP_BASE + 0x2C through 0x2D

7 6 5 4 3 2 1 0

R 0 TOSTS EN MTE

W

Reset 0 0 0 0 0 0 0 0

Figure 8-17. Mutext Timeout Register Format
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The Mutext timers are based on the standard peripheral clock. They are used to limit semaphore operations 
within the scope of a single frame. They will not increment if the slave port peripheral clock is disabled 
during STOP modes. Nor will they be triggered if a host write occurs to the semaphores while the 
peripheral clock is stopped. Peripheral clock operation in STOP modes is controlled via the 
peripheral-clock-enable registers in the SIM.

It is recommended that timeout periods extending beyond one frame be implemented in software as part 
of the start of frame interrupt, rather than being implemented through use of the time-out registers.

TOSTS Mutext Timeout Status 

Each semaphore has an optional “time-out” register. If enabled, a countdown timer is initiated to the 
specified value whenever the semaphore is set. The counter then begins counting down. When it hits zero, 
an interrupt is issued. The CPU should then clear the semaphore, which will also clear this field.

Each timer is stopped whenever the associated semaphore is cleared.

EN Mutext 0 Timeout Enable

MTE Mutext Timeout Exponent

The length of the timeout = 128 X 2MTE X Posc-high.

8.4.8 Slave Port Output Interrupt (INT_O) Control Register
RGPIO5 (Pin 11) can be reprogrammed to function as an interrupt output pin. This interrupt is intended to 
be asserted when a command-response packet has been stored in the slave-port mailboxes and is ready for 
the host to read. The host will see the interrupt and proceed to read the data.

Once the MMA955xL recognizes that the response packet is being transmitted, it will automatically clear 
the interrupt. The clearing action occurs while the packet is still underway. This prevents the host from 
falsely recognizing the same interrupt after the packet is complete.

The hardware will clear the interrupt on one of the following:
• SSB = 0 (SPI mode)
• Slave port I2C address matches address in packet header (I2C mode)

Table 8-15. Mutext Time-Out Status Bit Descriptions

Bit Value Function

0 Mutext time-out expiration is not asserted.

1 Mutext time-out expiration interrupt has been asserted.

Table 8-16. Mutext 0 Time-Out Enable Bit Descriptions

Bit Value Function

0 Mutext timeout is not enabled.

1 Mutext timer and interrupt are enabled.
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POL Output Polarity

The POL bit should only be changed when CLR is being written as 1. This forces INT_O to its new 
deasserted state.

CLR Clear/De-assert (INT_O = POL)

SET Set/Assert (INT_O = NOT POL

INT_O Current value of INT_O function

This bit reflects the current state of the INT_O function.

Table 8-21 defines INT_O behavior as a function of SET, CLR and the hardware-clear events.

SP_OIC SP_BASE + 0x2E

7 6 5 4 3 2 1 0

R RESERVED POL CLR INT_O

W SET

Reset 0 0 0 0 0 0 0 0

Figure 8-18. Slave Port Output Interrupt Control Register Format

Table 8-17. Output Polarity Bit Descriptions

Bit Value Function

0 Output is active high. (Interrupt asserted = high on output pin.)

1 Output is active low. (Interrupt asserted = low on output pin.)

Table 8-18. Clear/De-Assert Bit Descriptions

Bit Value Function

0 No action

1 De-assert INT_O (INT_O = POL)

Table 8-19. Set/Assert Bit Descriptions

Bit Value Function

Write 0 No action

Write 1 Assert INT_O (INT_O = NOT POL)

Table 8-20. Interrupt Logic value as a function of the POL bit

POL INT_O Assertion State

0 0 Not asserted

0 1 Asserted

1 0 Asserted

1 1 Not asserted
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Figure 8-19 and Figure 8-20 show the I2C slave port traffic versus interrupt assertion and de-assertion for 
both active high and active low interrupt outputs.

Figure 8-19. Output Interrupt Timing (POL = 0)

Figure 8-20. Output Interrupt Timing (POL = 1)

The interrupt output function is not the default function of Pin 11, which defaults to RGPIO5 (in input state 
with pull-up resistors disabled). It is important that the device receiving the interrupt has that interrupt 
input disabled until after the POL bit has been changed and SIM_PMCR2 has been reprogrammed to drive 
Pin 11 with the INT_O function. Alternately, an external pull-up/down resistor can be added to the pin to 
ensure the correct reset state. Table 8-22 reproduces the SIM_PMCR2 settings required to program Pin 11 
as INT_O. (See “SIM Pin Mux Control Registers” on page 176 for additional details.)

Table 8-21. INT_O Functional Truth Table

RESETB SET CLR
Hardware Clear 

Event
INT_O

0 N/A 0 N/A POL = 0

1 Don’t care 1 Don’t care POL

1 WRITE 1 0 01

1 Hardware-clear events should never occur at the same time as Write 1 to SET, assuming that the following communication 
protocols are followed.

NOT POL

1 No change 0 1 POL

1 No change 0 0 Previous INT_O

Command
Valid 

Response

Output Interrupt

Command Valid 
Response

SP_OIC[INT] = 1 Hardware clears interrupt immediately upon 
recognizing a valid response-packet request.

Command
Valid 

Response

Output Interrupt

Command Valid 
Response

SP_OIC[INT] = 1 Hardware clears interrupt immediately upon 
recognizing a valid response-packet request.
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8.5 I2C Serial Protocol and Timing

8.5.1 Baud Rates

I2C supports several ranges of operation. From the perspective of a slave device such as this module, the 
protocol is the same, regardless of speed. Differences in the I2C spec arise in terms of noise suppression, 
bit times and electrical drivers, but the logical behavior of the slave is consistent across the modes.

The MMA955xL utilizes an internal, 8-MHz CPU and peripheral clock, yielding an internal clock rate of 
125 ns. At this speed, a minimum (60 ns) SCL, high signal cannot be reliably sampled in high-speed mode. 
Therefore, the communication rate for this module is limited to 2 MHz or less.

The MMA955xL data sheet summarizes timing options and requirements for the slave I2C module.

8.5.2 Serial-Addressing

The MMA955xL operates as a slave that sends and receives data through an I2C, two-wire interface. The 
interface uses a serial data line (SDA) and a serial clock line (SCL) to achieve I-directional communication 
between master(s) and slave(s). A master (typically a microcontroller) initiates all data transfers to and 
from the MMA955xL and generates the SCL clock that synchronizes the data transfer.

The SDA line operates as both an input and an open-drain output. A pull-up resistor, typically 4.7 k, is 
required on SDA. The SCL line operates only as an input. A pull-up resistor, typically 4.7 k, is required 
on SCL if there are multiple masters on the two-wire interface or if the master in a single-master system 
has an open-drain SCL output.

8.5.3 Start, Stop and Repeated Start Conditions

Each transmission consists of a START condition (Figure 8-21) sent by a master, followed by the device 
seven-bit slave address and a read/write bit, a register address byte, one or more data bytes and, finally, a 
STOP or REPEATED START bit.

Table 8-22. Pin 11 Max Controls

RESETB SIM_PMCR2 PIN_11

0 0x00 RGPIO input

1 0x00 RGPIO1

1 Actual function is a combination of RGPIO controls and port controls.

1 0x01 PDB Output A

1 0x10 INT_O

0x11 Not defined
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Figure 8-21. Start (S) and Stop (P) Conditions

Both SCL and SDA remain high when the interface is not busy. A master signals the beginning of a 
transmission with a START (S) condition by transitioning SDA from high to low while SCL is high. When 
the master has finished communicating with the slave, it issues a STOP (P) condition by transitioning SDA 
from low to high while SCL is high.

The bus is then free for another transmission. Alternately, instead of STOP, the master can continue to 
control the bus by transmitting a repeated START bit instead of the STOP bit. The repeated START 
condition is functionally identical to a START condition. See Figure 8-22.

.

Figure 8-22. Start (S) and Repeated Start (Sr) Conditions

8.5.4 Bit Transfer

One data bit is transferred during each clock pulse (Figure 8-23). The data on SDA must remain stable 
while SCL is high.

.

Figure 8-23. Bit Transfer

8.5.5 Acknowledge

The acknowledge bit is the clocked ninth bit (Figure 8-24) that the recipient uses to handshake receipt of 
each byte of data. Thus each byte transferred effectively requires nine bits. The master generates the ninth 

SDA

SCL S P

Start Condition Stop Condition

SDA

SCL S

Start Condition

Sr

Repeated Start Condition

SDA

SCL

Data line stable.
Data valid.

Data change is
allowed.
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clock pulse and the recipient pulls down SDA during the acknowledge clock pulse. That makes the SDA 
line stable low during the high period of the clock pulse. When the master is transmitting to the 
MMA955xL, the MMA955xL generates the acknowledge bit because the MMA955xL is the recipient.

When the MMA955xL is transmitting to the master, the master generates the acknowledge bit because the 
master is the recipient.

Figure 8-24. Acknowledge

8.5.6 The Slave Address

MMA955xL has a seven-bit long slave address (Figure 8-25). The bit following the seven-bit slave 
address (Bit 8) is the read/write bit, which is low for a write command and high for a read command. The 
device address for the MMA955xL is software-programmable via the SP_ADDR register. This value must 
be programmed prior to start of any I2C communications unless the default value (0x4C) is used.

Figure 8-25. Slave Address

The MMA955xL monitors the bus continuously, waiting for a START condition followed by its slave 
address. When it recognizes its slave address, it acknowledges that communication and is ready for 
continued communication.

SCL

SDA
(By Transmitter)

SDA
(By Receiver)

Start Condition Clock Pulse
for Acknowledgement

1 2 3 4 5 6 7 8 9

SDA

SCL

.

.

0 R/W

MSB LSB

ACK01 0 01 1
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8.5.7 Message Format for Writing

The figures in this section make use of the following notation:

S Start Bit/Repeated Start Bit

A Acknowledge Bit

A Not-Acknowledge Bit

P Stop Bit

A write to the MMA955xL comprises the transmission of the MMA955xL's slave address with the 
read/write bit set to 0, followed by at least one byte of information. The first byte of information is the 
register address of the first internal register (0x00 to 0x21) that is to be updated. 

If a STOP condition is detected after just the register address is received, the MMA955xL takes no action. 
This is shown in Figure 8-26. 

Figure 8-26. Minimal I2C command has no effect

The MMA955xL clears its internal register address pointer to register 0x00 when a STOP condition is 
detected, so a single-byte write has no net effect because the register address given in this first-and-only 
byte is replaced by 0x00 at the STOP condition. 

The internal register address pointer is not, however, cleared on a repeated START condition. Figure 8-27 
shows the simplest case where a single register value is read.

.

Figure 8-27. Writing one byte of information into slave I2C

S 0 A A PSlave Address Register Address

Eve acknowledges
R / W

Eve acknowledges
A7 A6 A5 A4 A3 A2 A1 A0

S 0 A A PSlave Address Register Address

Eve acknowledges
R / WR / W

Eve acknowledges
A7 A6 A5 A4 A3 A2 A1 A0A7 A6 A5 A4 A3 A2 A1 A0

MMA955xL

MMA955xL

S 0 ASlave Address ARegister Address

acknowledgeR / W

acknowledge

A P

D7 D6 D5 D4 D3 D2 D1 D0

Data Byte

acknowledge

1 byte

auto-increment register address

clear register address

A7 A6 A5 A4 A3 A2 A1 A0

S 0 ASlave AddressS 0 ASlave Address ARegister Address

acknowledgeR / WR / W

acknowledge

A P

D7 D6 D5 D4 D3 D2 D1 D0

Data Byte A P

D7 D6 D5 D4 D3 D2 D1 D0D7 D6 D5 D4 D3 D2 D1 D0

Data Byte

acknowledge

1 byte

auto-increment register address

clear register address

A7 A6 A5 A4 A3 A2 A1 A0A7 A6 A5 A4 A3 A2 A1 A0
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Any bytes received after the register address are data bytes. The first data byte goes into the internal 
register of the MMA955xL that was designated by the register address. If multiple data bytes are 
transmitted before a STOP condition is detected, these bytes are generally stored in subsequent 
MMA955xL internal registers because the register address increments after each access. This 
auto-increment feature works identically for read and write operations.

The address will “wrap” around to Mailbox Register 0 once the Mailbox Register 31 is accessed.

Figure 8-28 illustrates the case where three bytes of information are written into three consecutive, slave 
I2C registers. 

Figure 8-28. Three consecutive byte writes to the slave I2C data registers

8.5.8 Message Format for Reading MMA955xL

Read instructions by the master involve writing the register address and reading the contents of one or 
more registers. In the first part of the sequence, the bus master is placing information on the bus. In the 
second, the MMA955xL is placing information on the bus. The I2C standard refers to this type of 
instruction as a “combined format” because the initial write of the device and register addresses must be 
followed by a read operation.

This is done by following the register address with a repeated START, a repeat of the device address (but 
now with RWB = 1), an acknowledgement and a data read.

S 0 ASlave Address A

A7 A6 A5 A4 A3 A2 A1 A0

Register Address

acknowledgeR / W

acknowledge

A

D7 D6 D5 D4 D3 D2 D1 D0

Data Byte for Address + 0

acknowledge auto-increments register address

D7 D6 D5 D4 D3 D2 D1 D0

Data Byte for Address + 1 A A P

D7 D6 D5 D4 D3 D2 D1 D0

Data Byte for Address + 2

clear register address

S 0 ASlave AddressS 0 ASlave Address A

A7 A6 A5 A4 A3 A2 A1 A0A7 A6 A5 A4 A3 A2 A1 A0

Register Address

acknowledgeR / WR / W

acknowledge

A

D7 D6 D5 D4 D3 D2 D1 D0D7 D6 D5 D4 D3 D2 D1 D0

Data Byte for Address + 0

acknowledge auto-increments register address

D7 D6 D5 D4 D3 D2 D1 D0D7 D6 D5 D4 D3 D2 D1 D0

Data Byte for Address + 1 A A P

D7 D6 D5 D4 D3 D2 D1 D0

Data Byte for Address + 2 A P

D7 D6 D5 D4 D3 D2 D1 D0D7 D6 D5 D4 D3 D2 D1 D0

Data Byte for Address + 2

clear register address
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The sequence outlined above is shown in Figure 8-29.

The MMA955xL is read using its internally stored register address as an address pointer, the same way the 
stored register address is used as address pointer for a write. The pointer generally auto-increments after 
each data byte is read using the same rules as for a write.  The address will “wrap” around to Mailbox 
Register 0 once Mailbox Register 31 is accessed.

The master can now read “n” consecutive bytes from MMA955xL, with the first data byte being read from 
the register addressed by the initialized register address. 

Figure 8-29. Read of a single byte of information

The I2C standard specifies that a master-receiver must signal the end of transfer to a slave transmitter via 
generation of a NACK (rather than ACK) prior to the Stop bit. This is shown in Figure 8-29.

S 0 A ASlave Address Register Address

Eve acknowledgesR / W

Eve acknowledges

A7 A6 A5 A4 A3 A2 A1 A0

S 1 A A PSlave Address Data Value to send to master

master NACKS on last byteR / W

Eve acknowledges

D7 D6 D5 D4 D3 D2 D1 D0

no stop!

now
stop

Repeated Start and repeat 
of address are required to 
change the direction of 
transmission.

S 0 A ASlave Address Register Address

Eve acknowledgesR / WR / W

Eve acknowledges

A7 A6 A5 A4 A3 A2 A1 A0A7 A6 A5 A4 A3 A2 A1 A0

S 1 A A PSlave Address Data Value to send to master

master NACKS on last byteR / WR / W

Eve acknowledges

D7 D6 D5 D4 D3 D2 D1 D0D7 D6 D5 D4 D3 D2 D1 D0

no stop!

now
stop

Repeated Start and repeat 
of address are required to 
change the direction of 
transmission.

MMA955xL

MMA955xL

MMA955xL
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Figure 8-30 extends the read sequence to access three bytes of information utilizing auto-incrementing of 
the address register.

Figure 8-30. Repeated Read of 3 Bytes of Information

8.6 SPI Serial Protocol and Timing
The SPI interface consists of two control lines and two data lines: SSB, SCLK, SDI and SDO. The SSB, 
also known as “Slave Select” (active low), is the slave device enable which is controlled by the SPI master. 
SSB is driven low at the start of a transmission. SSB is then driven high at the end of a transmission.

SCLK is the SPI clock that is also controlled by the SPI master. SDI and SDO are the SPI Data Input and 
the SPI Data Output. The SDI and SDO data lines are driven at the falling edge of the SCLK and should 
be captured at the rising edge of the SCLK.
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Eve acknowledgesR / W

Eve acknowledges
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S 1 A ASlave Address Data Value to send to master

master acknowledgesR / WR / W

Eve acknowledges

D7 D6 D5 D4 D3 D2 D1 D0D7 D6 D5 D4 D3 D2 D1 D0

no stop!
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of address are required to 
change the direction of 
transmission.

D7 D6 D5 D4 D3 D2 D1 D0D7 D6 D5 D4 D3 D2 D1 D0

Data Byte for Address + 1 A A P

D7 D6 D5 D4 D3 D2 D1 D0D7 D6 D5 D4 D3 D2 D1 D0
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clear register address
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Read and write register commands are completed in 16 clock pulses or in multiples of eight, in the case of 
a multiple-byte read/write.

8.6.1 SPI Read Operation

Figure 8-31 shows a read of a single register on the SPI port. A SPI read transfer requires that two bytes 
be transmitted on SDI by the host. The first consists of:

• A one-bit Read/Write signal (0 = Read, 1 = Write)

• A six-bit address

• A 1-bit don’t-care bit

The second byte on SDI is discarded by the MMA955xL and is shown as “dc” (Don’t Care).

Figure 8-31. Single Byte Read by Host using SPI

At the beginning of the transmission, the MMA955xL does not know the type of transfer that is coming. 
The first byte of information on SDO is therefore useless and should be discarded.

Transmission is initiated when the host drives SSB low and the transmission terminates when SSB is 
driven back high.

Packet payloads are an integer number of bytes long. The first address to be read is transmitted in the first 
byte of information placed on SDI by the master. Subsequent read addresses are automatically indexed by 
one.

dcA[5] A[4] A[3] A[2] A[1] A[0]

RWB

0 dc dc dc dc dc dc dcdc

dc D[6] D[5] D[4] D[3] D[2] D[1]dc dc dc dc dc dc D[0]dc

SSB

SCLK

SDI

SDO D[7]

data read from register at address A[5:0]

dcA[5] A[4] A[3] A[2] A[1] A[0]

RWB

0 dc dc dc dc dc dc dcdc

dc D[6] D[5] D[4] D[3] D[2] D[1]dc dc dc dc dc dc D[0]dc

SSB

SCLK

SDI

SDO D[7]

data read from register at address A[5:0]
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Figure 8-32 illustrates the case where the payload is three bytes long.

Figure 8-32. Three Byte Read by Host using SPI

dcA[5] A[4] A[3] A[2] A[1] A[0]

RWB

0 dc dc dc dc dc dc dcdc

dc D[6] D[5] D[4] D[3] D[2] D[1]dc dc dc dc dc dc D[0]dc

SSB

SCLK

SDI

SDO D[7]

data read from register at address A[5:0]

dc dc dc dc dc dc dc dcdc
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SDI
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data read from A[5:0] + 1
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dcA[5] A[4] A[3] A[2] A[1] A[0]
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0 dc dc dc dc dc dc dcdc

dc D[6] D[5] D[4] D[3] D[2] D[1]dc dc dc dc dc dc D[0]dc
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SCLK

SDI

SDO D[7]

data read from register at address A[5:0]

dc dc dc dc dc dc dc dcdc

D[6] D[5] D[4] D[3] D[2] D[1] D[0]

SDI

SDO D[7]

data read from A[5:0] + 2

dc dc dc dc dc dc dc

D[6] D[5] D[4] D[3] D[2] D[1] D[0]D[7]

SCLK

data read from A[5:0] + 1

SSB
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8.6.2 SPI Write Operation

In order to write to one of the eight-bit registers, an eight-bit write command must be sent to the 
MMA955xL. The write command consists of an MSB (0 = read, 1 = write) to indicate a write is to be made 
to the MMA955xL register, followed by a six-bit address and a one-bit, don’t-care bit.

The command should then be followed the eight-bit data transfer. See Figure 8-33 for the timing diagram 
for a single eight-bit data write.

Figure 8-33. One Byte Write by Host using SPI

Figure 8-34 illustrates the case where the host is writing three sequential bytes of information to the 
MMA955xL.

Note that the MMA955xL SDO line is not required for write operations. Data received on SDO by the 
master device should be ignored.

dcA[5] A[4] A[3] A[2] A[1] A[0]
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dc dc dc dc dc dc dcdcdc

D[6] D[5] D[4] D[3] D[2] D[1]

dc dc dc dc dc dc

D[0]

dc

SSB

SCLK

SDI

SDO

D[7]

data to write to register at address A[5:0]

dcA[5] A[4] A[3] A[2] A[1] A[0]

RWB

1

dc dc dc dc dc dc dcdcdc

D[6] D[5] D[4] D[3] D[2] D[1]

dc dc dc dc dc dc

D[0]

dc

SSB

SCLK

SDI

SDO

D[7]

data to write to register at address A[5:0]
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Figure 8-34. Three Byte Write by Host using SPI

8.7 Interrupts
The slave port module can generate three different interrupts to the CPU:

• An interrupt to notify the CPU that the system master has updated information in the mailbox 
registers

• Semaphore Time-out 1

• Semaphore Time-out 2

The slave port can also generate an interrupt to the host controller via the SP_OIC register.

8.7.1 Mailbox Interrupt

The SP_SCR[WIE] register bit can be used to enable/disable the mailbox interrupt. SP_SCR[WWUP] can 
be used to configure specific operation of the mailbox interrupt.
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dc dc dc dc dc dc

D[0]

dc

SSB

SCLK

SDI

SDO

D[7]

data to write to register at A[5:0]

dc dc dc dc dc dc dc dcdc
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WWUP = 00 is the default operation. In this case, assertion of interrupts is possible only in RUN mode. If 
the system master were to write to the mailbox registers during STOP, no action would be taken until STOP 
mode was exited. At that point (assuming WIE=1), the interrupt would be issued and the CPU would 
process the new data. This mode of operation will yield the most accurate results from the on-chip data 
converters, at the price of additional latency (determined by the sample frame rate) in handling of any new 
command/data from the system master.

WWUP = 01 includes the operation above. In addition, SP_MB31 now takes on a special role as a 
“wake-up register.” A write by the master to this register will force the CPU into RUN mode if it is not 
already there. This minimizes latency, at the possible cost of decreased accuracy on the affected set of data 
conversions.

WWUP = 10 takes the “wake-up register” concept to the extreme. Any write to any of the mailbox registers 
will result in an immediate wake-up interrupt assertion.

8.7.2 Semaphore Interrupts

Each of the two semaphores has its own time-out control register and time-out interrupt. The semaphore 
timers are intended to limit semaphore lockouts to one frame in length or less. Longer periods should be 
enforced via software in the start of frame interrupt service routine.

8.8 Reset Operation
This module is reset along with the rest of the chip. I2C and SPI communications are not possible during 
reset (specifically sim_chip_resetb) assertion.



Slave Interface

MMA955xL Intelligent Motion-Sensing Platform, Rev. 0

128 Freescale Semiconductor, Inc.



MMA955xL Intelligent Motion-Sensing Platform, Rev. 0

Freescale Semiconductor, Inc. 129

Chapter 9  Inter-Integrated Circuit

9.1 Introduction
The Inter-Integrated Circuit (IIC or I2C) provides a method of communication between a number of 
devices. The interface is designed to operate up to 100 kbps with maximum bus loading and timing. The 
device is capable of operating at higher baud rates, up to a maximum of clock/20 (or 400 kHz), with 
reduced bus loading. The maximum communication length and the number of devices that can be 
connected are limited by a maximum bus capacitance of 400 pF. System Management Bus Specification 
(SMBus), Version 2 is supported.

This module is the same master/slave I2C module found on many Freescale devices. The MMA955xL 
devices already have a dedicated slave interface to communicate with a host processor as detailed in 
Chapter 8, “Slave Interface”. Consequently, this additional I2C circuit will be used mainly as a master I2C 
for controlling and communicating with external peripherals such as any sensors. Doing so, the 
MMA955xL will behave as an effective and autonomous sensor hub.

The I2C module may continue to run in STOPFC mode so long as PCESFC1[MI2C] is set to 1. Because 
the system clock runs at only 62.5 kHz in STOPSC, this module should not be used in that mode.

NOTE
On MMA955xL devices, the SDA1 and SCL1 I2C lines share the same pins 
as SDO and SSB slave SPI lines. Consequently, this additional I2C circuit 
can only be used when the MMA955xL slave interface is operating under 
I2C mode.

9.1.1 Features

The I2C module includes these features:

• Compatible with I2C bus standard

• Multi-master operation

• Software programmable for one of 64 serial clock frequencies

• Software-selectable acknowledge bit

• Interrupt-driven, byte-by-byte data transfer

• Arbitration-lost interrupt with automatic mode-switching from master to slave

• Calling-address identification interrupt

• START and STOP signal generation/detection

• Repeated START signal generation/detection

• Acknowledge-bit generation/detection
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• Bus-busy detection

• General call recognition

• 10-bit address extension

• Programmable glitch input filter

• Address matching causes wake-up when MCU is in Stop mode

9.1.2 Modes of Operation

The I2C module’s MCU modes include:

• Run mode — The basic mode of operation. To conserve power in this mode, disable the module.

• Wait mode — The module continues to operate when the MCU is in Wait mode and can provide a 
wake-up interrupt.

• Stop mode — The I2C is inactive in Stop mode for reduced power consumption except 
address-matching is enabled in Stop mode. The STOP instruction does not affect I2C register 
states.

9.1.3 Block Diagram

Figure 9-1 provides a block diagram of the I2C module.
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Figure 9-1. IIC Functional Block Diagram

9.2 External Signal Description
This section describes each user-accessible pin signal.

9.2.1 SCL — Serial Clock Line

The bidirectional SCL is the serial clock line of the I2C system.

9.2.2 SDA — Serial Data Line

The bidirectional SDA is the serial data line of the I2C system.

Input Filter
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IN/OUT
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REGISTER
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ARBITRATION
ACK/NACK

CTRL_REG FREQ_REG ADDR_REG STATUS_REG DATA_REG

ADDR_DECODE DATA_MUX
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CONTROL
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9.3 Register Definition

9.3.1 Module Memory Map

The I2C has ten eight-bit registers. The base address of the module is hardware programmable. The I2C 
register map is fixed and begins at the module’s base address. Table 9-1 summarizes the I2C module’s 
address space. The following section describes the bit-level arrangement and functionality of each register.

This section consists of the I2C register descriptions in address order. 

Refer to the direct-page register summary in the Chapter 5, “Memory Maps” for the absolute address 
assignments for all I2C registers. This section refers to registers and control bits only by their names. A 
Freescale-provided equate or header file is used to translate these names into the appropriate absolute 
addresses.

9.3.2 I2C Address Register 1 (IICA1)

Table 9-1. Module Memory Map

Address Use Access

Base + 0x0000 I2C Address Register 1 (IICA1) Read/Write

Base + 0x0001 I2C Frequency Divider Register (IICF) Read/Write

Base + 0x0002 I2C Control Register 1 (IICC1) Read/Write

Base + 0x0003 I2C Status Register (IICS) Read

Base + 0x0004 I2C Data IO Register (IICD) Read/Write

Base + 0x0005 I2C Control Register 2 (IICC2) Read/Write

Base + 0x0006 I2C input programmable filter (IICFLT) Read/Write

7 6 5 4 3 2 1 0

R AD7 AD6 AD5 AD4 AD3 AD2 AD1 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 9-2. I2C Address Register 1 (IICA1)

Table 9-2. IICA1 Field Descriptions

Field Description

7:1
AD[7:1]

Slave Address 1— The AD[7:1] field contains the slave address to be used by the I2C module. This field is used 
on the seven-bit address scheme and the lower seven bits of the 10-bit address scheme.
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9.3.3 I2C Frequency Divider Register (IICF)

For example, if the bus speed is 8 MHz, Table 9-4 shows the possible hold time values with different ICR 
and MULT selections to achieve an I2C baud rate of 100 kbps.

7 6 5 4 3 2 1 0

R MULT ICR

W

Reset 0 0 0 0 0 0 0 0

Figure 9-3. I2C Frequency Divider Register (IICF)

Table 9-3. IICF Field Descriptions

Field Description

7:6
MULT

I2C Multiplier Factor — The MULT bits define the multiplier factor mul. This factor is used along with the SCL 
divider to generate the I2C baud rate. The multiplier factor mul as defined by the MULT bits is provided below.
00 mul = 01
01 mul = 02
10 mul = 04
11 Reserved

5:0
ICR

I2C Clock Rate — The ICR bits are used to prescale the bus clock for bit rate selection. These bits and the MULT 
bits are used to determine the IIC baud rate, the SDA hold time, the SCL Start hold time and the SCL Stop hold 
time. Table 9-6 provides the SCL divider and hold values for corresponding values of the ICR.
The SCL divider multiplied by multiplier factor mul is used to generate IIC baud rate. 

I2C Baud Rate = Bus Speed (Hz)/(mul × SCL Divider) Eqn. 9-1

SDA hold time is the delay from the falling edge of SCL (IIC clock) to the changing of SDA (IIC data).

SDA Hold Time = Bus Period (s) × mul × SDA Hold Value Eqn. 9-2

SCL start hold time is the delay from the falling edge of SDA (IIC data) while SCL is high (Start condition) to the 
falling edge of SCL (IIC clock).

SCL Start Hold Time = Bus Period (s) × mul × SCL Start Hold Value Eqn. 9-3

SCL stop hold time is the delay from the rising edge of SCL (IIC clock) to the rising edge of SDA
SDA (IIC data) while SCL is high (Stop condition).

SCL Stop Hold Time = Bus Period (s) × mul × SCL Stop Hold Value Eqn. 9-4

Table 9-4. Example of IICF Hold Times

MULT ICR
Hold Times (s)

SDA SCL Start SCL Stop

0x2 0x00 3.500 3.000 5.500

0x1 0x07 2.500 4.000 5.250

0x1 0x0B 2.250 4.000 5.250
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0x0 0x14 2.125 4.250 5.125

0x0 0x18 1.125 4.750 5.125

Table 9-5. I2C Divider and Hold Values

ICR
(hex)

SCL
Divider

SDA Hold
Value

SCL Hold
(Start) 
Value

SCL Hold
(Stop) 
Value

ICR
(hex)

SCL 
Divider

SDA 
Hold
Value

SCL Hold
(Start)
Value

SCL Hold
(Stop)
Value

00 20 7 6 11 20 160 17 78 81

01 22 7 7 12 21 192 17 94 97

02 24 8 8 13 22 224 33 110 113

03 26 8 9 14 23 256 33 126 129

04 28 9 10 15 24 288 49 142 145

05 30 9 11 16 25 320 49 158 161

06 34 10 13 18 26 384 65 190 193

07 40 10 16 21 27 480 65 238 241

08 28 7 10 15 28 320 33 158 161

09 32 7 12 17 29 384 33 190 193

0A 36 9 14 19 2A 448 65 222 225

0B 40 9 16 21 2B 512 65 254 257

0C 44 11 18 23 2C 576 97 286 289

0D 48 11 20 25 2D 640 97 318 321

0C 44 11 18 23 2C 576 97 286 289

0D 48 11 20 25 2D 640 97 318 321

0E 56 13 24 29 2E 768 129 382 385

0F 68 13 30 35 2F 960 129 478 481

10 48 9 18 25 30 640 65 318 321

11 56 9 22 29 31 768 65 382 385

12 64 13 26 33 32 896 129 446 449

13 72 13 30 37 33 1024 129 510 513

14 80 17 34 41 34 1152 193 574 577

15 88 17 38 45 35 1280 193 638 641

Table 9-4. Example of IICF Hold Times (continued)

MULT ICR
Hold Times (s)

SDA SCL Start SCL Stop
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9.3.4 I2C Control Register (IICC1)

16 104 21 46 33 36 1536 257 766 769

17 128 21 58 65 37 1920 257 958 961

18 80 9 38 41 38 1280 129 638 641

19 96 9 46 49 39 1536 129 766 769

1A 112 17 54 57 3A 1792 257 894 897

1B 128 17 62 65 3B 2048 257 894 897

1C 144 25 70 73 3C 2304 385 1150 1153

1D 160 25 78 81 3D 2560 385 1278 1281

1E 192 33 94 97 3e 3072 513 1534 1537

1F 240 33 118 121 3f 3840 513 1918 1921

7 6 5 4 3 2 1 0

R IICEN IICIE MST TX TXAK RSTA WUEN 0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 9-4. I2C Control Register (IICC1)

Table 9-5. I2C Divider and Hold Values (continued)

ICR
(hex)

SCL
Divider

SDA Hold
Value

SCL Hold
(Start) 
Value

SCL Hold
(Stop) 
Value

ICR
(hex)

SCL 
Divider

SDA 
Hold
Value

SCL Hold
(Start)
Value

SCL Hold
(Stop)
Value
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9.3.5 I2C Status Register (IICS)

Table 9-6. IICC1 Field Descriptions

Field Description

7
IICEN

I2C Enable — The IICEN bit determines whether the I2C module is enabled.
0 I2C is not enabled.
1 I2C is enabled. 

6
IICIE

I2C Interrupt Enable — The IICIE bit determines whether an IIC interrupt is requested.
0 I2C interrupt request not enabled.
1 I2C interrupt request enabled.

5
MST

Master Mode Select — When the MST bit is changed from 0 to 1, a START signal is generated on the bus 
and master mode is selected. When this bit changes from 1 to 0 a STOP signal is generated and the mode of 
operation changes from master to slave.
0 Slave mode.
1 Master mode.

4
TX

Transmit Mode Select — The TX bit selects the direction of master and slave transfers. In master mode this 
bit must be set according to the type of transfer required. Therefore, for address cycles, this bit is always high. 
When addressed as a slave this bit must be set by software according to the SRW bit in the status register.
0 Receive.
1 Transmit.

3
TXAK

Transmit Acknowledge Enable — This bit specifies the value driven onto the SDA during data acknowledge 
cycles for both master and slave receivers. 
There are two conditions that effect NACK/ACK generation.
If FACK (fast NACK/ACK) is cleared,
0 An acknowledge signal is sent to the bus on the following receiving data byte.
1 No acknowledge signal response is sent to the bus on the following receiving data byte. 
If FACK bit is set. no ACK or NACK is sent after receiving one data byte until this TXAK bit is written
0 An acknowledge signal is sent out to the bus on the current receiving data byte
1 No acknowledge signal response is sent to the bus on the current receiving data byte
Note: SCL is held to low until TXAK is written.

2
RSTA

(Write Only read 
always 0)

Repeat START — Writing 1 to this bit generates a repeated START condition provided it is the current master. 
Attempting a repeat at the wrong time results in loss of arbitration.
0 No repeat start detected in bus operation.
1 Repeat start generated. 

1
WUEN

Wake-up Enable — I2C can wake the MCU from stop mode when slave address or general call address 
matching occurs.
0  Normal operation. No interrupt generated when address matching in stop mode.
1  Enables the wake-up function in stop mode.

7 6 5 4 3 2 1 0

R TCF IAAS BUSY ARBL 0 SRW IICIF RXAK

W

Reset 1 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 9-5. I2C Status Register (IICS)
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Table 9-7. IICS Field Descriptions

Field Description

7
TCF

Transfer Complete Flag — This bit is set on the completion of a byte and acknowledge bit transfer. Note that 
this bit is only valid during or immediately following a transfer to the I2C module or from the I2C module.The TCF 
bit is cleared by reading the IICD register in receive mode or writing to the IICD in transmit mode.
0 Transfer in progress.
1 Transfer complete.

6
IAAS

Addressed as a Slave — The IAAS bit is set when one of the following conditions is met:
 • When the calling address matches the programmed slave address
 • If the GCAEN bit is set and a general call is received
 • If SIICAEN bit is set, when the calling address matches the 2nd programmed slave address 
 • If ALERTEN bit is set and SMBus alert response address is received 
This bit is set before ACK bit. The CPU needs to check the SRW bit and set TX/RX bit accordingly. Writing the 
IICC1 register with any value clears this bit.
0 Not addressed.
1 Addressed as a slave. 

5
BUSY

Bus Busy — The BUSY bit indicates the status of the bus regardless of slave or master mode. The BUSY bit is 
set when a START signal is detected and cleared when a STOP signal is detected.
0 Bus is idle.
1 Bus is busy. 

4
ARBL

Arbitration Lost — This bit is set by hardware when the arbitration procedure is lost. The ARBL bit must be 
cleared by software or by writing 1 to it. 
0 Standard bus operation.
1 Loss of arbitration. 

2
SRW

Slave Read/Write — When addressed as a slave, the SRW bit indicates the value of the R/W command bit of 
the calling address sent to the master. 
0 Slave receive, master writing to slave.
1 Slave transmit, master reading from slave. 

1
IICIF

I2C Interrupt Flag — The I2CIF bit is set when an interrupt is pending. This bit must be cleared by software or 
by writing a 1 to it in the interrupt routine. One of the following events can set the I2CIF bit: 
 • One byte transfer including ACK/NACK bit completes if FACK = 0 
 • One byte transfer excluding ACK/NCAK bit completes if FACK = 1. an ACK or NACK is sent on the bus by 

writing 0 or 1 to TXAK after this bit is set as receive mode.
 • Match of slave addresses to calling address including primary slave address, general call address, alert 

response address, and second slave address. (When address matching happens in stop mode, the I2CIF is 
cleared automatically after core gets out of STOP.)

 • Arbitration lost
 • Time-outs in SMBus mode except both SCL and SDA high time-out
0 No interrupt pending.
1 Interrupt pending. 

0
RXAK

Receive Acknowledge — When the RXAK bit is low, it indicates an acknowledge signal has been received after 
the completion of one byte of data transmission on the bus. If the RXAK bit is high it means that no acknowledge 
signal is detected.
0 Acknowledge received.
1 No acknowledge received. 
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9.3.6 I2C Data I/O Register (IICD)

NOTE
When transitioning out of master receive mode, the I2C mode must be 
switched before reading the IICD register to prevent an inadvertent 
initiation of a master receive data transfer.

In slave mode, the same functions are available after an address match has occurred. 

TX bit in IICC must correctly reflect the desired direction of transfer in master and slave modes for the 
transmission to begin. For instance, if the I2C is configured for master transmit but a master receive is 
desired, then reading the IICD does not initiate the receive.

Reading the IICD returns the last byte received while the I2C is configured in either master receive or slave 
receive modes. The IICD does not reflect every byte that is transmitted on the I2C bus, nor can software 
verify that a byte has been written to the IICD correctly by reading it back.

In master transmit mode, the first byte of data written to IICD following assertion of MST (start bit) or 
assertion of RSTA bit (repeated start) is used for the address transfer and must comprise of the calling 
address (in bit 7 to bit 1) concatenated with the required R/W bit (in position bit 0).

9.3.7 I2C Control Register 2 (IICC2)

7 6 5 4 3 2 1 0

R DATA

W

Reset 0 0 0 0 0 0 0 0

Figure 9-6. I2C Data I/O Register (IICD)

Table 9-8. IICD Field Descriptions

Field Description

7:0
DATA

Data — In master transmit mode, when data is written to the IICD, a data transfer is initiated. The most significant 
bit is sent first. In master receive mode, reading this register initiates receiving of the next byte of data. 

7 6 5 4 3 2 1 0

R GCAEN ADEXT 0 0 0 AD10 AD9 AD8

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 9-7. I2C Control Register 2 (IICC2)
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9.3.8 I2C Programmable Input Glitch Filter (IICFLT)

Table 9-9. IICC2 Field Descriptions

Field Description

7
GCAEN

General Call Address Enable — The GCAEN bit enables or disables general call address.
0 General call address is disabled.
1 General call address is enabled.

6
ADEXT

Address Extension — The ADEXT bit controls the number of bits used for the slave address.
0 7-bit address scheme.
1 10-bit address scheme.

2:0
AD[10:8]

Slave Address — The AD[10:8] field contains the upper three bits of the slave address in the 10-bit address 
scheme. This field is only valid when the ADEXT bit is set.

7 6 5 4 3 2 1 0

R 0 0 0 FLT4 FLT3 FLT2 FLT1 FLT0

W

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 9-8. I2C Programmable Input Glitch Filter Register (IICFLT)
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9.4 Functional Description
This section provides a complete functional description of the I2C module.

9.4.1 I2C Protocol

The I2C bus system uses a Serial Data Line (SDA) and a Serial Clock Line (SCL) for data transfer. All 
devices connected to it must have open drain or open collector outputs. A logic AND function is exercised 
on both lines with external pull-up resistors. The value of these resistors is system dependent.

Normally, a standard communication is composed of four parts: 

• START signal

• Slave address transmission

• Data transfer

• STOP signal 

Table 9-10. IICFLT Field Descriptions

Field Description

4:0
FLT

I2C Programmable Filter Factor contains the programming controls for the width of glitch (in terms of bus clock 
cycles) the filter must absorb; in other words, the filter does not let glitches less than or equal to this width setting 
pass. For instance: FLT[3:0] 

0000 No Filter/Bypass
0001 Filter glitches up to width of 1 (half) IPBUS clock cycle
0010 Filter glitches up to width of 2 (half) IPBUS clock cycles
0011 Filter glitches up to width of 3 (half) IPBUS clock cycles
0100 Filter glitches up to width of 4 (half) IPBUS clock cycles
0101 Filter glitches up to width of 5 (half) IPBUS clock cycles
0110 Filter glitches up to width of 6 (half) IPBUS clock cycles
0111 Filter glitches up to width of 7 (half) IPBUS clock cycles
1000 Filter glitches up to width of 8 (half) IPBUS clock cycles
1001 Filter glitches up to width of 9 (half) IPBUS clock cycles
1010 Filter glitches up to width of 10 (half) IPBUS clock cycles
1011 Filter glitches up to width of 11 (half) IPBUS clock cycles
1100 Filter glitches up to width of 12 (half) IPBUS clock cycles
1101 Filter glitches up to width of 13 (half) IPBUS clock cycles
1110 Filter glitches up to width of 14 (half) IPBUS clock cycles
1111 Filter glitches up to width of 15 (half) IPBUS clock cycles

Note: The width of the FLT is an integration option which can be changed in different SoCs. Also the clock source 
used is an integration configurative option - It could be the 2X IPBus clock or the IPbus clock - which one 
needs to be identified at architectural definition. For the 4-bit definitions above, hard descriptions of “half” 
IPBUS clock cycles is not the case when the IPBUS clock is used for filtering logic. 
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The STOP signal should not be confused with the CPU STOP instruction. The I2C bus system 
communication is described briefly in the following sections and is illustrated in Figure 9-9.

 

Figure 9-9. I2C Bus Transmission Signals

9.4.1.1 START Signal

When the bus is free that is, no master device is engaging the bus (both SCL and SDA lines are at logical 
high), a master may initiate communication by sending a START signal. As shown in Figure 9-9, a START 
signal is defined as a high-to-low transition of SDA while SCL is high. This signal denotes the beginning 
of a new data transfer (each data transfer may contain several bytes of data) and brings all slaves out of 
their idle states. 

9.4.1.2 Slave Address Transmission

The first byte of data transferred immediately after the START signal is the slave address transmitted by 
the master. This is a seven-bit calling address followed by a R/W bit. The R/W bit tells the slave the desired 
direction of data transfer.

1 = Read transfer, the slave transmits data to the master.

0 = Write transfer, the master transmits data to the slave.

Only the slave with a calling address that matches the one transmitted by the master responds by sending 
back an acknowledge bit. This is done by pulling the SDA low at the 9th clock (see Figure 9-9).

No two slaves in the system may have the same address. If the I2C module is the master, it must not 
transmit an address that is equal to its own slave address. The I2C cannot be master and slave at the same 
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time. However, if arbitration is lost during an address cycle, the I2C reverts to slave mode and operates 
correctly even if it is being addressed by another master.

9.4.1.3 Data Transfer

Before successful slave addressing is achieved, the data transfer can proceed byte-by-byte in a direction 
specified by the R/W bit sent by the calling master.

All transfers that come after an address cycle are referred to as data transfers, even if they carry sub-address 
information for the slave device.

Each data byte is 8 bits long. Data may be changed only while SCL is low and must be held stable while 
SCL is high as shown in Figure 9-9. There is one clock pulse on SCL for each data bit, the MSB being 
transferred first. Each data byte is followed by a 9th (acknowledge) bit that is signalled from the receiving 
device. An acknowledge is signalled by pulling the SDA low at the ninth clock. In summary, one complete 
data transfer needs nine clock pulses.

If the slave receiver does not acknowledge the master in the 9th bit time, the SDA line must be left high 
by the slave. The master interprets the failed acknowledge as an unsuccessful data transfer.

If the master receiver does not acknowledge the slave transmitter after a data byte transmission, the slave 
interprets this as an end of data transfer and releases the SDA line. 

In either case, the data transfer is aborted and the master does one of two things:

• Relinquishes the bus by generating a STOP signal.

• Commences a new calling by generating a repeated START signal.

9.4.1.4 STOP Signal

The master can terminate the communication by generating a STOP signal to free the bus. However, the 
master may generate a START signal followed by a calling command without generating a STOP signal 
first. This is called repeated START. A STOP signal is defined as a low-to-high transition of SDA while 
SCL at logical 1 (see Figure 9-9).

The master can generate a STOP even if the slave has generated an acknowledge at which point the slave 
must release the bus.

9.4.1.5 Repeated START Signal

As shown in Figure 9-9, a repeated START signal is a START signal generated without first generating a 
STOP signal to terminate the communication. This is used by the master to communicate with another 
slave or with the same slave in different mode (transmit/receive mode) without releasing the bus.

9.4.1.6 Arbitration Procedure

The I2C bus is a true multi-master bus that allows more than one master to be connected on it. If two or 
more masters try to control the bus at the same time, a clock synchronization procedure determines the bus 
clock for which the low period is equal to the longest clock low period and the high is equal to the shortest 
one among the masters. The relative priority of the contending masters is determined by a data arbitration 
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procedure, a bus master loses arbitration if it transmits logic 1 while another master transmits logic 0. The 
losing masters immediately switch over to slave-receive mode and stop driving SDA output. In this case, 
the transition from master to slave mode does not generate a STOP condition. Meanwhile, a status bit is 
set by hardware to indicate loss of arbitration.

9.4.1.7 Clock Synchronization

Because wire and logic is performed on the SCL line, a high-to-low transition on the SCL line affects all 
the devices connected on the bus. The devices start counting their low period and after a device’s clock has 
gone low, it holds the SCL line low until the clock high state is reached. However, the change of low to 
high in this device clock may not change the state of the SCL line if another device clock is still within its 
low period. Therefore, synchronized clock SCL is held low by the device with the longest low period.

Devices with shorter low periods enter a high wait state during this time. (See Figure 9-10.) When all 
devices concerned have counted off their low period, the synchronized clock SCL line is released and 
pulled high. There is then no difference between the device clocks and the state of the SCL line and all the 
devices start counting their high periods. The first device to complete its high period pulls the SCL line 
low again.

Figure 9-10. I2C Clock Synchronization

9.4.1.8 Handshaking

The clock synchronization mechanism can be used as a handshake in data transfer. Slave devices may hold 
the SCL low after completion of one byte transfer (nine bits). In such case, it halts the bus clock and forces 
the master clock into wait states until the slave releases the SCL line.

9.4.1.9 Clock Stretching

The clock synchronization mechanism can be used by slaves to slow down the bit rate of a transfer. After 
the master has driven SCL low, the slave can drive SCL low for the required period and then release it. If 
the slave SCL low period is greater than the master SCL low period then the resulting SCL bus signal low 
period is stretched.

SCL1

SCL2

SCL

Internal Counter Reset

Delay Start Counting High Period



Inter-Integrated Circuit

MMA955xL Intelligent Motion-Sensing Platform, Rev. 0

144 Freescale Semiconductor, Inc.

9.4.2 10-Bit Address

For 10-bit addressing, 0x11110 is used for the first five bits of the first address byte. Various combinations 
of read/write formats are possible within a transfer that includes 10-bit addressing.

9.4.2.1 Master-Transmitter Addresses a Slave-Receiver

The transfer direction is not changed (see Table 9-11). When a 10-bit address follows a START condition, 
each slave compares the first seven bits of the first byte of the slave address (11110XX) with its own 
address and tests whether the eighth bit (R/W direction bit) is 0. It is possible that more than one device 
finds a match and generates an acknowledge (A1). Each slave that finds a match compares the eight bits 
of the second byte of the slave address with its own address, but only one slave finds a match and generate 
an acknowledge (A2). The matching slave remains addressed by the master until it receives a STOP 
condition (P) or a repeated START condition (Sr) followed by a different slave address.

After the master-transmitter has sent the first byte of the 10-bit address, the slave-receiver sees an I2C 
interrupt. User software must ensure that for this interrupt, the contents of IICD are ignored and not treated 
as valid data.

9.4.2.2 Master-Receiver Addresses a Slave-Transmitter

The transfer direction is changed after the second R/W bit. (See Table 9-12.) Up to and including 
Acknowledge Bit A2, the procedure is the same as that described for a master-transmitter addressing a 
slave-receiver. After the repeated START condition (Sr), a matching slave remembers that it was addressed 
before. This slave then checks whether the first seven bits of the first byte of the slave address following 
the Sr are the same as they were after the START condition (S) and tests whether the eighth (R/W) bit is 
1. If there is a match, the slave considers that it has been addressed as a transmitter and generates 
Acknowledge A3. The slave-transmitter remains addressed until it receives a STOP condition (P) or a 
repeated START condition (Sr) followed by a different slave address.

After a repeated START condition (Sr), all other slave devices also compare the first seven bits of the first 
byte of the slave address with their own addresses and test the eighth (R/W) bit. However, none of them 
are addressed because R/W = 1 (for 10-bit devices), or the 11110XX slave address (for seven-bit devices) 
does not match.

Table 9-11. Master-Transmitter Addresses Slave-Receiver with a 10-bit Address

S Slave Address first seven bits R/W A1 Slave Address Second byte A2 Data A ... Data A/A P

11110 + AD10 + AD9 0 AD[8:1]

Table 9-12.  Master-Receiver Addresses a Slave-Transmitter with a 10-Bit Address

S Slave Address
First seven bits

R/W A1 Slave 
Address
Second 

byte

A2 Sr Slave Address 
First seven bits

R/W A3 Data A ... Data A P

11110 + AD10
+ AD9

0 AD[8:1] 11110 + AD10
+ AD9

1



Inter-Integrated Circuit

MMA955xL Intelligent Motion-Sensing Platform, Rev. 0

Freescale Semiconductor, Inc. 145

After the master-receiver has sent the first byte of the 10-bit address, the slave-transmitter sees an I2C 
interrupt. User software must ensure that for this interrupt, the contents of IICD are ignored and not treated 
as valid data.

9.4.3 Address Matching

All received addresses can be requested in seven-bit or 10-bit address. I2C address register 1, that contains 
the I2C primary slave address, always participates in the address-matching process. If the GCAEN bit is 
set, general call participates the address matching process. When the I2C module responds to one of the 
above mentioned address, it acts as a slave-receiver and the IAAS bit is set after the address cycle.

Software needs to read the IICD register, after the first byte transfer, to determine that the address is 
matched.

Figure 9-11. I2C Address Matching

9.5 Resets
The I2C is disabled after reset. The I2C cannot cause an MCU reset.

9.6 Interrupts
The I2C generates a single interrupt.

An interrupt from the I2C module is generated when any of the events in Table 9-13 occur, provided the 
IICIE bit is set. The interrupt is driven by bit IICIF (of the I2C status register) and masked with bit IICIE 
(of the I2C control register). The IICIF bit must be cleared by software by writing a 1 to it in the interrupt 
routine.

You can determine the interrupt type by reading the status register. For SMBus time-outs interrupt, the 
interrupt is driven by SLTF and masked with bit IICIE. The SLTF bit must be cleared by software by 
writing 1 to it in the interrupt routine. You can determine the interrupt type by reading the status register.
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NOTE
In master receive mode, the FACK must be set to 0 before the last byte 
transfer.

9.6.1 Byte Transfer Interrupt

The Transfer Complete Flag (TCF) bit is set at the falling edge of the ninth clock to indicate the completion 
of byte and acknowledgement transfers.

9.6.2 Address Detect Interrupt

When the calling address matches the programmed slave address (I2C address register) or when the 
GCAEN bit is set and a general call is received, the IAAS bit in the status register is set.

The CPU is interrupted, provided the IICIE is set. The CPU must check the SRW bit and set its Tx mode 
accordingly.

9.6.3 Exit from Low-Power/Stop Modes

The slave receive input detect circuit and address matching feature are still active on low-power modes 
(wait and stop). An asynchronous input matching slave address or general call address brings the CPU out 
of low power/stop mode if the interrupt is not masked. Therefore, TCF and IAAS both can trigger this 
interrupt. 

9.6.4 Arbitration Lost Interrupt

The I2C is a true multi-master bus that allows more than one master to be connected on it. If two or more 
masters try to control the bus at the same time, the relative priority of the contending masters is determined 
by a data arbitration procedure. The I2C module asserts this interrupt when it loses the data arbitration 
process and the ARBL bit in the status register is set.

Arbitration is lost in the following circumstances:

• SDA is sampled as a low when the master drives a high during an address or data transmit cycle

• SDA is sampled as a low when the master drives a high during the acknowledge bit of a data 
receive cycle

• A START cycle is attempted when the bus is busy

• A repeated START cycle is requested in Slave mode

• A STOP condition is detected when the master did not request it

Table 9-13. Interrupt Summary

Interrupt Source Status Flag Local Enable

Complete one-byte transfer TCF IICIF IICIE

Match of received calling address IAAS IICIF IICIE

Arbitration lost ARBL IICIF IICIE

Wake-up form sop3 interrupt IAAS IICIF IICIE and WUEN
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This bit must be cleared by software by writing a 1 to it.

9.6.5 Programmable Input Glitch Filter 

An I2C glitch filter has been added outside the I2C legacy modules, but within the I2C package. This filter 
can absorb glitches on the I2C clock and data lines for the I2C module. The width of the glitch to absorb 
can be specified in terms of the number of (half) bus clock cycles.

A single glitch filter control register is provided as IICFLT. Effectively, any down-up-down or up-down-up 
transition on the data line that occurs within the number of clock cycles programmed here is ignored by 
the I2C. The programmer only needs to specify the size of glitch (in terms of bus clock cycles) for the filter 
to absorb and not pass it.

Figure 9-12. Programmable input glitch filter diagram

9.6.6 Address Matching Wake-up 

When address-matching happens as I2C works in Slave Receive mode, the MCU wakes from Stop mode. 
After the address-matching IAAS bit is set, an interrupt is sent out at the end of address-matching to wake 
up the MCU.

The ACK will also be sent from slave if address is correctly matched. The IAAS bit must be cleared after 
the clock recovery. 

NOTE
After the system was recovered to Run mode, the I2C module must restart 
if it is needed to work. The SCL line will not be hold low until the I2C 
module resets after address-matching.
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9.7 Initialization/Application Information

Module Initialization (Slave)
1. Write: IICC2

— To enable or disable general call

— To select 10-bit or seven-bit addressing mode

2. Write: IICA1

— To set the slave address

3. Write: IICC1

— To enable I2C and interrupts

4. Initialize RAM variables (IICEN = 1 and IICIE = 1) for transmit data

5. Initialize RAM variables used to achieve the routine shown in Figure 9-13

Module Initialization (Master)
1. Write: IICF

— To set the I2C baud rate (example provided in this chapter)

2. Write: IICC1

— To enable I2C and interrupts

3. Initialize RAM variables (IICEN = 1 and IICIE = 1) for transmiting data

4. Initialize RAM variables used to achieve the routine shown in Figure 9-13

5. Write: IICC1

— To enable TX

6. Write: IICC1 

— To enable MST (Master mode)

7. Write: IICD 

— With the address of the target slave. (The LSB of this byte determines whether the 
communication is master receive or transmit.)

Module Use
The routine shown in Figure 9-13 can handle both master and slave I2C operations. For 
slave operation, an incoming I2C message that contains the proper address begins I2C 
communication. For master operation, communication must be initiated by writing to the 
IICD register.
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0

IICF

IICA1

Baud rate = BUSCLK/(2 x MULT x (SCL DIVIDER))

TX TXAK RSTA IICC1 IICEN IICIE MST

Module configuration

ARBL 0 SRW IICIF RXAKIICS TCF IAAS BUSY

Module status flags

Register Model

AD[7:1]

Address to which the module responds when addressed as a slave (in Slave mode)

MULT ICR

IICD DATA

Data register; Write to transmit I2C data read to read I2C data

0 AD10 AD9 AD8IICC2 GCAEN ADEXT

Address configuration

IICSMB FACK ALERTENSIICAEN TCKSEL SHTF1

IICA2

I2C SMBus Control and Status Register

0SAD[7:1]

I2C Address Register 2

IICSLTH

I2C SCL Low Time Out Register High

IICSLTL SSLT[7:0]

I2C SCL Low Time Out Register Low 

SSLT[15:8]

IICFLT FLT3 FLT2 FLT1 FLT00 0 0 O

I2C Programmable Input Glitch Filter

SHTF2 SHTF2IE

WUEN

SLTF

0 0

0
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Figure 9-13. Typical I2C Interrupt Routine

2011-0009

Clear

Master 
Mode 

?

Tx/Rx 
?

Last Byte 
Transmitted

?

RXAK=0 
?

End of 
Addr Cycle 
(Master Rx) 

?

Write Next
Byte to IICD

Switch to 
Rx Mode

Dummy Read 
from IICD

Generate 
Stop Signal

Read Data 
from IICD 
and Store

Set TXACK =1
Generate 
Stop Signal

Second-Last 
Byte to Be Read 

?

Last 
Byte to Be Read 

?

Arbitration 
Lost 

?

Clear ARBL

IAAS=1 
?

IAAS=1 
?

SRW=1 
?

TX/RX 
?

Set TX 
Mode

Write Data 
to IICD

Set RX 
Mode

Dummy Read 
from IICD

ACK from
Receiver 

?

Tx Next 
Byte

Read Data 
from IICD 
and Store

Switch to 
Rx Mode

Dummy Read 
from IICD

RTI

Y N

Y

Y Y

Y

Y

Y

Y

Y

Y

N

N

N

NN

N

N

N

N

Y

TX RX

RX

TX(Write)

(Read)

N

IICIF

Address Transfer Data Transfer

(MST = 0)
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See Note 1 See Note 2

NOTES:
1. If general call is enabled, a check must be done to determine whether the received address was a general call address (0x00). If the received address was a 

general call address, then the general call must be handled by user software.
2. When 10-bit addressing is used to address a slave, the slave sees an interrupt following the first byte of the extended address. User software must ensure that for 

this interrupt, the contents of IICD are ignored and not treated as a valid data transfer.
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Figure 9-14. Typical I2C SMBus Interrupt Routine
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NOTES:
1. If a general call or SIICAEN is enabled, a check must be done to determine whether the received address was a general-call address (0x00) 

or a SMbus-device, default address. If the received address was one of them, it must be handled by user software.
2. Flow chart 1 means Figure 9-13. Typical I2C Interrupt Routine.
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Chapter 10  Analog Front End

10.1 Introduction
The Analog Front End (AFE) includes the accelerometer, signal conditioning blocks, off-chip analog 
inputs, analog multiplexor and an analog-to-digital converter and control logic. In short, the AFE is 
responsible for converting analog sensor measurements into digital form suitable for subsequent filtering 
and digital-signal processing.

10.2 Features
• Up to 488 conversion frames per second support for a 488-Hz output data rate

• 200 g/sqrt (Hz) noise at nominal ODR = 488 Hz

• Programmable configuration for ADC conversions on a per-frame basis

— No conversions (non-sample frame)

— X, Y and Z acceleration

— X, Y and Z acceleration plus temperature sensor reading

— X, Y and Z acceleration plus external ADC input

• Multiple modes of operation allow trade-off of power/latency versus ADC resolution and accuracy

— Target raw resolution selectable to 10, 12, 14 and 16 bits

• Programmable acceleration ranges: 2g, 4g and 8g full scale

• Programmable accelerometer anti-aliasing filters

• Integrated temperature sensor: -50°C to 150°C full scale1

• External differential ADC input range: 0.65V ± 0.45V

10.3 AFE Architecture and Theory of Operation
Figure 10-1 provides an overview of the AFE architecture. This includes the following major functions:

• Analog-to-digital converter common to all sensor functions

• Accelerometer functions

— Transducer drive circuitry

— MEMS transducer

— Capacitance-to-voltage conversion and amplification

— Anti-aliasing filters for X, Y and Z dimensions

1. The temperature sensor is designed for a 200°C, full-scale range. This does not imply that the device is intended to
operate over this entire range. This device is guaranteed to operate over the commercial (-40 to 85°C) temperature
range.



Analog Front End

MMA955xL Intelligent Motion-Sensing Platform, Rev. 0

154 Freescale Semiconductor, Inc.

• Temperature sensor (9 mV/°C typical from -50�C to 150�C)

10.3.1 ADC Operation

A conversion sequence is started when the AFE receives the “start A” signal from the system integration 
module.

The ADC covers a 1.8V span, from -0.9V to +0.9V differential input. Individual sensor inputs are 
prescaled to match this range.

The XYZ axis accelerations are converted during each analog Phase A. Optionally, either the internal 
temperature sensor or external analog signal can be converted as a fourth measurement.

Figure 10-1. AFE Data Flow

The ADC contains a number of options to trade off power consumption versus resolution and accuracy.

Table 10-1 shows how resolution can be traded for reduced analog-phase duration. The options are lower 
consumption or more time for the digital phase.

• “CM” bits are the Conversion-Mode bits from the AFE_CSR register“. These control the target raw 
resolution of the ADC conversion (10, 12, 14 or 16 bits).

• “N” represents the number of bits required to hold a full-scale ADC result. The actual number of 
effective bits will be less than N due to noise.

The ADC conversion results are delivered in a left-justified format. They are subsequently treated as 16-bit 
numbers regardless of the selected Conversion Mode, so there may be missing codes in the low-order bits. 
This also keeps the scaling (Unit/LSB) independent of CM choice.
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Besides the ADC resolution, the Full Scale range of the Analog Front End line-up can be selected through 
the FS field of the AFE_CSR register.

Table 10-2 shows the various ranges versus FS setting, this applies only to the acceleration measurement. 
The third column reflects the sensitivity in mg per LSB associated to a given range. The appropriate 
scaling is realized by the AFE Software Routine that are further described in Freescale MMA955xL 
Software Reference Manual.

Table 10-1. Resolution and Timing Versus Conversion Mode

CM1

1 See the AFE Control and Status Register (AFE_CSR)

ADC 
Number 
of Bits

Analog Phase Time2 in s

2 Nominal Values

N 3 Samples 4 Samples

11 10 135 154

10 12 159 186

01 14 207 250

00 16 303 378

Table 10-2. AFE Scaling Selection

FS1

1 See the AFE Control and Status Register 
(AFE_CSR).

Full-Scale Data 
Range

XYZ 
Acceleration 

Scaling2

(mg/LSB)

2 Nominal values, once Freescale trim algorithms 
have been run on the data.

00 +/-8g 0.244

01 +/-2g 0.061

10 +/-4g 0.122

11 +/-8g 0.244
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10.3.2 Accelerometer Principle of Operation

The Freescale accelerometer is a surface-micromachined, integrated-circuit accelerometer.

The device consists of three surface micromachined capacitive sensing cells (g-cells) and a CMOS signal 
conditioning ASIC contained in a single, integrated-circuit package. The sensing elements are sealed 
hermetically at the wafer level using a bulk micromachined “cap” wafer.

The g-cells are fabricated as a mechanical structure formed from semiconductor materials (polysilicon) 
using semiconductor processes (masking and etching). They can be modeled as a set of beams attached to 
a movable central mass that moves between fixed beams. The movable beams can be deflected from their 
rest position by subjecting the system to an acceleration. This is shown for a single dimension in 
Figure 10-2 (A).

When the beams attached to the center masses move, the distance from them to the fixed beams on one 
side will increase by the same amount that the distance to the fixed beams on the other side decreases. The 
change in distance is a measure of acceleration. The g-cell beams form two back-to-back capacitors 
Figure 10-2 (B). As the center plate moves with acceleration, the distance between the beams change and 
each capacitor’s value will change.

The CMOS ASIC uses switched-capacitor techniques to measure the g-cell capacitors and extract the 
acceleration data from the difference between each set of two capacitors. The ASIC also signals conditions 
and filters the signal, providing a high-level output voltage that is ratiometric and proportional to 
acceleration.

Figure 10-2. Transducer Physical Model (A) and Equivalent Circuit Model (B)

Normally, the center mass in Figure 10-2 (A) is equidistant from both upper and lower plates such that C1 
and C2 are equal. However, if the mass is displaced, the two capacitance values move in opposite 
directions. C1 and C2 form a capacitive divider. Figure 10-3 shows the outer legs of the divider (N1 and 
N2) driven with square waves that are 180 degrees out of phase from one another.1

1. Actual waveforms may vary in the actual application, but the theory presented here is still applicable from a high-level
perspective.

x

d

d

C1

C2

BA
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Figure 10-3. 

When N1 and N2 switch from zero volts to Vs and -Vs, respectively, Vout is determined by the capacitor 
ratios as follows:

Vout = -Vs + [ 2 Vs C1 / (C1 +  C2) ] Eqn. 10-1

Vout  =  [ - (C1 +  C2) Vs  + 2 Vs C1 ] / (C1 +  C2) Eqn. 10-2

Vout  =  [ -  Vs C2  +  Vs C1 ] / (C1 +  C2) Eqn. 10-3

Vout = Vs (C1 - C2) / (C1 + C2) Eqn. 10-4

Capacitance Theory

We can convert this to an expression of Vout as a function of displacement by considering capacitance 
theory. If we model C1 + C2 as standard, parallel-plate capacitors and ignore fringing capacitance, we 
begin by noting:

K = N A  Eqn. 10-5

C1 = K / (d + x) Eqn. 10-6

C2 = K / (d - x) Eqn. 10-7

C0 = K / d Eqn. 10-8

Where:

• N = The number of beams in the g-cell (unitless)

• A = The area of the facing side of the beam in meters2

• = The dielectric constant in farads per meter (1 farad = 1 coulomb per volt)

• K = A constant used to simplify the equations

• d = The nominal distance between the beams in meters

• x = The beam displacement in meters

• C1 and C2 = Measured capacitances

• C0 = Nominal value of C1 and C2

Vout = Vs (C1 - C2) / (C1 + C2) Eqn. 10-9

C1

C2

Vout

N1

N2

Vs

0V

-Vs

0V
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Vout = Vs (K / (d + x) - K / (d - x) ) / (K / (d + x) + K / (d - x) ) Eqn. 10-10

Vout = Vs (1 / (d + x) - 1 / (d - x) ) / (1 / (d + x) + 1 / (d - x) ) Eqn. 10-11

Vout = Vs ((d - x) - (d + x)) / (d2 - x2) ) / (((d + x) + (d - x)) / (d2 - x2))  Eqn. 10-12

Vout = Vs ((d - x) - (d + x)) / ((d + x) + (d - x))  Eqn. 10-13

Vout = Vs (x / d) Eqn. 10-14

Newton’s Second Law

F = mass * Acceleration Eqn. 10-15

Where:

• F = Force applied to an object in Newtons (1N = 1 kg * m/s2)

• The mass of the object is measured in kilograms

• The acceleration of the object is measured in (m/s2)

Hooke’s Law

F = -k * x Eqn. 10-16

Where:

• F = The displacement force in N

• k = Spring constant in N/m

• x = The beam displacement in meters

Combining F = mass * Acceleration and F = -k * x :

x = mass * Acceleration / -k Eqn. 10-17

Finally

Replace x in Vout = Vs (x / d) using the expression above and replace K by K = N A  and we have:

 Vout = -Vs (mass * Acceleration) / (N A e d) Eqn. 10-18
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Where:

• N = The number of beams in the g-cell (unitless)

• A = The area of the facing side of the beam in meter2

• = The dielectric constant in farads per meter (1 farad = 1 coulomb per volt)

• d = The nominal distance between the beams in meters

• The mass of the object is measured in kilograms

• The acceleration of the object is measured in (m / s2)

10.4 Memory Map Overview
WARNING

The AFE Register set may be accessed (both READ and WRITE) from 
Supervisor Mode only. ADC output values will be made available via 
reserved RAM locations once Freescale trim algorithms have been run on 
the data. For further details, see Application Identifier 0x06 
(XYZ_DATA_FBID) in the MMA955xL Software Reference Manual.

Table 10-3 summarizes the few specific fields of the AFE_CSR register that can be updated by the AFE 
application and how it is used to configure the AFE for the next conversion sequence.

Table 10-3. AFE_CSR Register Field Descriptions

Field Description

FS Full-Scale Selection
AFE_CSR[FS] control AFE Full Scale selection as per Table 10-2

CM Conversion Mode
These bits control ADC resolution/accuracy versus power and conversion time trade-offs. Values available for 
end user applications are listed in Table 10-1. 
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Chapter 11  System Integration Module (SIM)

11.1 Introduction
The System Integration Module (SIM) provides a central mechanism for managing:

• Reset generation

• Mode control

• Oscillator control

• Clock gating

Figure 11-1 illustrates some of the major interactions with other on-chip components. These will be 
discussed in more detail in the sections that follow.
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Figure 11-1. Major SIM Interactions

11.2 Reset Generation

11.2.1 Reset Sources

There are a number of sources that may cause the device to reset itself:

POR Active Low Power-On-Reset internally generated 
whenever VDDA < POR brownout threshold.

RESETB The device can be reset by pulling the external RESETB 
low.

BDM Reset The device can be reset via the Background debug port.
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Software Reset The CPU can be explicitly shut down by writing a 1 to 
the software reset bit of the SIM Control Register 
(RSCR[ASR]).

ILOP Reset The CPU may request a reset in the event of an illegal 
operation.

ILAD Reset The CPU may request a reset in the event of an attempt 
to access an illegal address.

The ILOP and ILAD reset outputs from the Version 1 ColdFire CPU are collectively shown as “CPU 
resets” in Figure 11-2. Alternatively, it is also possible to configure the CPU to simply issue an illegal op 
code or illegal address exception by setting the instruction-related, reset-disable bit in the CPU 
Configuration Register (CPUCR[IRD]).

11.2.2 Reset Outputs

Figure 11-2. Reset Generation (functional Block Diagram)

Figure 11-2 illustrates how the six reset sources outlined in the previous section are processed to generate 
three different reset domains. The “Pulse Shaper” blocks have the following characteristics:

• A logic zero on the input is transmitted immediately to the output.

• A logic one on the input is only transmitted to the output on a positive edge of the clock N clock 
periods after the input de-assertion. (N is specified as a number in the upper right corner of each 
block.)
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These functions ensure that internal resets assert asynchronously and de-assert synchronously. They also 
guarantee that the internal resets are stable long enough to propagate properly throughout the system.

Internal reset domains are the following:

extended_por_b This is signal is a minimum of 4,096 cycles long and is initiated by the 
internal, power-on-reset circuitry. It feeds the specialized registers which are 
reset only on power-up.

sim_chip_resetb This is the general chip reset used to place on-chip logic into its default state.

sim_cpu_resetb The CPU is the last block in the digital domain to be freed from reset. This 
occurs 32 cycles after de-assertion of sim_chip_resetb. The 32 cycles are 
required to fetch the device security setting from on-chip flash memory 
before allowing the CPU to boot.

Figure 11-3 shows an idealized start-up sequence in which the raw POR signal starts immediately at time 
zero. The oscillator starts some time after desertion of the raw POR. The extended_por_b signal is 
extended a minimum of 4,096 cycles after that.

WARNING
In order for the selected boot from flash to happen, the RESETB pin has to 
be cleared before the end of the 4,096-cycle, extended period (about 
500 µs). This bounds the time constant of any external filtering circuit that 
may be added for EMC and noise immunity.

.

Figure 11-3. Power-On-Reset Sequence

oscout

Raw POR

extended_por_b

sim_chip_resetb

sim_cpu_resetb

4096 cycles

16 cycles

32 cycles
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Figure 11-4 shows a similar sequence, but in this case the reset was initiated by one of the on-chip 
synchronous sources. Note how even a short source assertion immediately propagated through the tree, but 
followed the same, well-defined de-assertion sequence shown in the previous figure.

Figure 11-4. Synchronous Reset Sequence

As depicted in Figure 11-2, the RESETB pin is an open-drain, bidirectional function. At power-up, it is 
configured strictly as an input pin, but can be programmed to become bidirectional afterwards. Output 
drive capability is enabled by setting DR field to 1 in the SIM Reset Control & Status Register. This will 
result in RESETB being pulled low for a minimum of 64 clock cycles in response to any internally 
generated reset event. Using this feature, the MMA955xL can reset external devices whenever it is reset 
for any purpose other than power-on-reset.

WARNING
When using the Output Drive capability of the RESETB pin, specific 
attention must be paid to the external RC elements. An external, pull-up 
resistor (typical value 4.7 k) must be connected to that pin and the total 
shunt capacitance to GND kept below 47 pF.

11.3 Mode Control

11.3.1 STOP Mode

Chapter 4, “Operational Phases and Modes of Operation” discusses how the various phases of operation 
are mapped into the Version 1 ColdFire CPU’s operating modes. The STOP Control and Status Register 
(STOPSCR) can be used to control STOP-mode operation. At any point in time, the software must select 
one of four choices that determine operation for the next STOP command. These are:

STOPFC STOP with oscillator in high-speed (fast) mode

STOPSC STOP with oscillator in slow-speed mode

STOPNC STOP with oscillator completely off

STOP Disabled STOP disabled. A STOP instruction will either result in 
a system reset or an exception.

These choices are mutually exclusive at any one point in time; but the value of the STOPSCR register can 
be changed by the CPU as desired. STOP mode is exited via RESET or any active interrupt. 

oscout

sync resetb

extended_por_b
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There are separate peripheral clock enable registers for RUN, STOPFC and STOPSC. These registers allow 
you to specify which peripheral clocks are running (or not) for each of these three modes. CPU clocks are 
normally disabled when in any STOP mode. The exception to this rule is when debug operation is enabled 
(XCSR[ENBDM] = 1).

Figure 11-5. High speed clock operation extends into STOP region

Stop modes are initiated by a STOP instruction executed by the CPU, which then signals the SIM to begin 
gating clocks as appropriate and/or change oscillator frequency. When switching from RUN mode into any 
STOP mode, high speed operation is continued for a minimum of three clock cycles into STOP and may 
resume up to three cycles prior to exiting STOP. The SIM is responsible for “re-shaping” the STOP request 
signal from the CPU such that it matches operation shown in Figure 11-5.

Please note that interrupt operation may be limited on a module by module basis as a function of clock 
availability/asynchronous features for each module.

11.3.2 DEBUG Modes

The CPU can enter BDM HALT mode through any of the following mechanisms:

1. BKGD = 0 during POR

2. BKGD = 0 during BDM reset

3. CSR2[BFHBR] = 1 during BDM reset

4. Illegal op code reset and CSR2[IOPHR] = 1

5. Illegal address reset and CSR2[IADHR] = 1

6. Issue BACKGROUND command via BDM interface

7. HALT instruction

8. BDM breakpoint

9. ColdFire Fault-on-Fault

Of these, only Method 1 is guaranteed to work under all circumstances (except when the device is secured). 
Methods 1 through 5 are partially managed via the System Integration Module. 

Version 1 ColdFire devices support a bidirectional, one-wire background debug port (BKGD) that is 
commonly multiplexed with the mode-select function. (MS is active during the reset sequence.) These two 
signals are demultiplexed shortly after being routed on chip, processed separately and recombined prior to 
being accessed by the CPU debug module.

CPU STOP

Clock
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11.4 Oscillator Control

11.4.1 General

Because the frequency of operation is coupled with the mode of operation, oscillator control is shared 
between the CLKGEN module (Chapter 12, “On-Chip Oscillator (CLKGEN)”) and the SIM. The SIM 
supplies the power-down control and speed control. All other controls are managed locally by the 
CLKGEN module.

Speed and power-down choices are intrinsic in the choices of operating mode (RUN or STOP). Operation 
in STOP is affected by the settings specified in the STOP Control and Status Register.

11.4.2 CPU

The ColdFire core receives two clocks from the system integration module.

• A general CPU clock. This clock is gated off by the SIM in STOP mode.

• A dedicated clock used for serial communication on the BDM port. It is gated using an enable 
signal from the CPU.

Both clocks on the MMA955xL are active during reset. Both are derived from the CLKGEN module 
oscout signal.

11.5 Clock Gating
The MMA955xL includes a powerful, Version 1 ColdFire CPU and peripheral subsystem. Many 
applications may not need all the capabilities the device offers. Unneeded functions may have their clocks 
disabled in order to save power.

Clock settings can be separately controlled for RUN, STOPFC and STOPSC modes. This means that mode 
transitions naturally enable/disable various systems automatically. The programmer is not required to 
explicitly enable/disable them each time modes are switched.

The SIM is always clocked in RESET, RUN and HALT modes. It is not clocked in any of the STOP modes. 
This implies that control paths for the start of frame signal are combinational in nature, as the SIM must 
be able to generate either “start A“or “start D“signal when “start frame” is asserted.

ALL clocks are disabled in STOPNC. 

Subsystems that are unclocked during RUN mode cannot be read/written by the CPU. Writes are ignored, 
and reads return unknown quantities.

Table 11-1 shows that the slave I2C and external interrupt pin are the only two peripheral functions capable 
of issuing interrupts for wake-up when not clocked.
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11.6 Module Memory Map

Table 11-1. Unclocked Interrupt Support

Sub-System Unclocked Interrupts?

Slave Port Yes - This module operates 
independently of the CLKGEN module

Master I2C No

16-bit Modulo Timer No

Two-channel Timer/PWM No

IRQ External Interrupt Yes

AFE No

SIM Start D
1

1 Only applicable in STOPFC and STOPSC modes.

Table 11-2. Module Memory Map

Register Name Offset Function

STOPCR 0x0 SIM STOP Control and Status Register

FCSR 0x1 SIM Frame Control and Status Register

RSCR 0x2 SIM Reset Status and Control Register

Reserved 0x3 Reserved Location

PCESFC0 0x4 SIM Peripheral Clock Enable Register 0 for STOPFC mode.

PCESFC1 0x5 SIM Peripheral Clock Enable Register 1 for STOPFC mode.

PCESSC0 0x6 SIM Peripheral Clock Enable Register 0 for STOPSC mode.

PCESSC1 0x7 SIM Peripheral Clock Enable Register 1 for STOPSC mode.

PCERUN0 0x8 SIM Peripheral Clock Enable Register 0 for RUN mode.

PCERUN1 0x9 SIM Peripheral Clock Enable Register 1 for RUN mode.

PMCR0 0xA SIM Pin Mux Control Register 0

PMCR1 0xB SIM Pin Mux Control Register 1

PMCR2 0xC SIM Pin Mux Control Register 3
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11.7 Registers Descriptions

11.7.1 STOPCR - STOP Control Register

SIM_CLK_EN SIM Clock Enable

This bit overrides the clock gating that otherwise occurs within the SIM during STOP mode. This 
capability is not used during normal operation so this bit should be left at 0 which is the default state out 
of reset.

The FC, SC and NC bits are mutually exclusive. They control the mode of operation to be initiated by the 
next STOP instruction. A maximum of one of the three can be asserted at any time. If none of them are 
enabled, STOP is considered an illegal instruction. Instead of entering one of the STOP modes, the MCU 
will initiate an illegal opcode reset if CPUCR[IRD] is cleared. If CPUCR[IRD] is set, an illegal instruction 
exception is initiated. (For details, Section 20.3.6, “CPU Configuration Register (CPUCR)”.)

If the CPU attempts to write more than one of FC, SC or NC, all three will be cleared and, again, STOP 
will be considered an illegal instruction.

FC STOP Mode Enable for STOP With Fast Clock

SC STOP Mode Enable for STOP With Slow Clock

STOPCR SIM_BASE + 0x0

7 6 5 4 3 2 1 0

R 0 0 0 SIM_CLK_EN FC SC NC SCtoFC

W

Reset 0 0 0 0 0 0 0 0

Figure 11-6. STOP Mode Control and Status Register

Table 11-3. SIM Clock Enable Field Descriptions

Bit Value Function

0 The SIM will enter a non-clocked, low-power, state during STOP modes

1 Internal SIM clocking remains active during STOP modes

Table 11-4. STOP Mode Enable for STOP With Fast Clock Field Descriptions

Bit Value Function

0 STOP with Fast Clock is NOT enabled.

1 The next STOP instruction will result in the CPU entering STOP with the oscillator in high-speed mode.

Table 11-5. STOP Mode Enable for STOP With Slow Clock Field Descriptions

Bit Value Function

0 STOP with Slow Clock is NOT enabled.

1 The next STOP instruction will result in the CPU entering STOP, with the oscillator in low-speed mode.
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NC STOP Mode Enable for STOP With No Clock

SCtoFC Slow Clock to Fast Clock STOP Transition Enabled

The device can be programmed to transition from STOPSC to STOPFC when a “Start Sample Frame” signal 
is asserted. Simply program SCtoFC to 1. This bit allows the CPU to initiate IDLE mode with a STOPSC 
transition. That state will automatically transition to STOPFC when the AFE needs to be started up for the 
next frame. This operation occurs without CPU intervention if this bit is set.

 

11.7.2 FCSR - Frame Control and Status Register

A_EN A Enable

Individual frames can be programmed to start with A or D based on the state of this bit. Simply program 
the desired value for the next frame before entering I. If all frames include an analog sample phase, this 
bit can be left at 1.

SFEIE Start Frame Error Interrupt Enable

Frames can be sub-divided into A, D and I. Phases sequence from A (optional) to D to I and repeat. 
The transition from D to I is initiated by the CPU via a STOP instruction with STOPCR[SC] set to one. 

Table 11-6. STOP Mode Enable for STOP With No Clock Field Descriptions

Bit Value Function

0 STOP with No Clock is NOT enabled.

1 The next STOP instruction will result in the CPU entering STOP, with the oscillator disabled. The device will be in 
deep-sleep mode. In this mode, the device can be awakened only by asynchronous interrupts (one of which can 

be initiated via the slave I2C interface) or a reset assertion.

Table 11-7. Slow Clock to Fast Clock STOP Transition Enabled Field Descriptions

Bit Value Function

0 Automatic transition from STOPSC to STOPFC is not enabled.

1 The “Start Sample Frame” signal will cause the device to transition from STOPSC to STOPFC should it occur while 
the device is parked in STOPSC. It has no affect otherwise.

FCSR SIM_BASE + 0x1

7 6 5 4 3 2 1 0

R 0 0 A_EN SFEIE FE SFDIE SFD

W

Reset 0 0 1 0 0 0 0 0

Figure 11-7. Frame Control and Status Register

Table 11-8. Frame Control and Status Field Descriptions

Bit Value Function

0 The next frame will skip A and proceed directly to  D.

1 The next frame start with A, followed by D.
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The transition from I to A is normally initiated by the “start frame” signal from the CLKGEN module 
to the SIM. The SIM then issues the “Start A” or “Start D” signal. However, it is possible that errors in 
the CPU software could result in an overrun of D into the period normally budgeted for the next frame. 
This software design error can be trapped by programming STOPCR[SFEE]. When set, a “start frame” 
signal occurring during RUN mode will set STOPCR[FE] and issue a Level-7, non-maskable interrupt.

FE Frame Error

This bit is set when a frame error has been detected. STOPCR[SFEE] must have been set to 01 or 11 for 
this to occur.

SFDIE Start D Interrupt Enable

When this bit is set, an interrupt will be asserted to wake the CPU at the start of D (SFD will be asserted). 
Asserted interrupts are cleared by clearing SF.

The SIM also outputs a Start D signal to the PDB regardless of whether or not SFDIE is asserted.

SF Start Frame

This bit is set when that start D signal is asserted.   It is cleared by writing a 1 to this location.

11.7.3 RCSR - Reset Control and Status Register

This register includes read-only status flags to indicate the source of the most-recent reset. When a debug 
host forces reset by setting CSR2[BDFR], none of the status bits in RCSR will be set (RCSR[4:0] = $00). 

Table 11-9. Start Frame Error Interrupt Enable Field Descriptions

Bit Value Function

00 No error checking is performed.

01 Error checking is performed when background debug mode is not enabled (XCSR[ENBDM] = 0), but not during 
debug mode (XCSR[ENBDM] = 1.

10 RESERVED (Implement as “no error checking is performed.”)

11 Error-checking is performed in both normal and debug mode.

Table 11-10. Frame Error Field Descriptions

Bit Value Function

0 No error detected.

1 Frame error detected. Clear this flag by writing a “1” to this location.

Table 11-11. Start D Interrupt Enable Field Descriptions

Bit Value Function

0 Start of  D interrupt is not enabled.

1 Start of  D interrupt is enabled.

Table 11-12. Start Frame Field Descriptions

Bit Value Function

0 Start of  D has not been asserted.

1 Start of  D has been asserted. Clear this flag by writing a “1” to this location.
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The reset state of these bits depends on what caused the microcontroller to reset. Also included are bits for 
asserting software reset and controlling operation of the reset pin.

Bits[4:0] of this register are mutually exclusive. This register is asynchronously reset during 
Power-On-Reset and subsequently is synchronously updated based on the precedence level of reset inputs. 
Only the most-recent reset source will be indicated if multiple resets occur. If multiple reset sources assert 
simultaneously, the highest-precedence source will be indicated. The precedence from highest to lowest is:

1. POR

2. PIN

3. BDM (no bits asserted)

4. ILAD

5. ILOP

6. SW

Power-On Reset is always set during a Power-On Reset. Power-On Reset will be cleared and external reset 
(PIN) will be set, however, if the external reset pin is asserted or remains asserted after the Power-On Reset 
has de-asserted.

DR Drive Reset Pin

The DR bit is only reset via POR.

ASR Assert Software Reset

RCSR SIM_BASE + 0x2

7 6 5 4 3 2 1 0

R 0 DR 0 SW ILOP ILAD PIN POR

W ASR

POR 0 0 0 0 0 0 0 1

Figure 11-8. Reset Control and Status Register

Table 11-13. Drive Reset Pin Field Descriptions

Bit Value Function

0 Do not drive the external reset pin.

1 Internally generated resets (excluding POR) will result in the RESETB pin being pulled low.

Table 11-14. Assert Software Reset Field Descriptions

Bit Value Function

0 Do nothing

1 A software initiated reset can be generated by writing “1” to this bit location. The SW bit will be set when exiting 
this reset sequence.
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SW Software Reset

ILOP Illegal Opcode Reset

Reset was caused by an attempt to execute an unimplemented or illegal opcode. This includes any illegal 
instruction (except the ILLEGAL (0x4AFC) opcode) or a privilege violation (execution of a privileged 
instruction in user mode). The STOP instruction is considered illegal if stop is disabled. The HALT 
instruction is considered illegal if the BDM interface is disabled by XCSR[ENBDM] = 0.

ILAD Illegal Address Reset

Reset was caused by the processor's attempted access of an illegal address in the memory map, an address 
error, an RTE format error or the fault-on-fault condition. All the illegal address resets are enabled when 
CPUCR[ARD] = 0. When CPUCR[ARD] = 1, the appropriate processor exception is generated instead of 
the reset. If a fault-on-fault condition is reached, the processor simply halts.

 PIN External Pin Reset

POR Power-On Reset

Table 11-15. Software Reset Field Descriptions

Bit Value Function

0 Reset not caused by a software reset.

1 Reset initiated by writing ASR to 1

Table 11-16. Illegal Opcode Reset Field Descriptions

Bit Value Function

0 Reset not caused by an illegal opcode.

1 Reset caused by an illegal opcode

Table 11-17. Illegal Address Reset Field Descriptions

Bit Value Function

0 Reset not caused by an illegal access.

1 Reset caused by an illegal access

Table 11-18. External Pin Reset Field Descriptions

Bit Value Function

0 Reset was not the result of an external pin reset.

1 Reset was the result of an external pin reset (RESETB=0).

Table 11-19. Power-On Reset Field Descriptions

Bit Value Function

0 Reset was not a result of a power on sequence

1 The last reset was the result of a power on sequence
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11.7.4 Peripheral Clock Enable Registers

The MMA955xL contains a number of resources that may not be needed for all applications. The clock 
control registers can be used to individually program clocks on or off for each of the following modes: 
RUN (PCERUNx), STOPSC (PCESSCx) and STOPFC (PCESFCx). In STOPNC, the oscillator is disabled, 
so a separate control is not needed for that mode.

Peripheral registers cannot be read by the CPU if their PCERUNx bit has not been set to 1.

Operation of these registers is unaffected by debug mode.

The bit fields for the three sets of registers are identical and described below.

T2 Timer 2 Clock Enable

T1 Timer 1 Clock Enable

PCESFC0, PCESSC0 and PCERUN0 SIM_BASE + 0x4, 0x6, 0x8

7 6 5 4 3 2 1 0

R 0 T2 T1 T0 IRQ AFE PCTRL FLSH

W

Reset 1 1 1 1 1 1 1 1

Figure 11-9. Peripheral Clock Enable Register 0’s

PCESFC1, PCESSC1 and PCERUN1 SIM_BASE + 0x5, 0x7, 0x9

7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 Mi2C SLAVE

W

Reset 1 1 1 1 1 1 1 1

Figure 11-10. Peripheral Clock Enable Register 1’s

Table 11-20. Timer 2 Clock Enable Field Descriptions

Bit Value Function

0 Programmable Delay Block (PDB) is not enabled.

1 The clock to the PDB is enabled for this mode of operation.

Table 11-21. Timer 1 Clock Enable Field Descriptions

Bit Value Function

0 General-purpose timer T1 clock is not enabled.

1 The clock to the timer/PWM is enabled for this mode of operation.
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T0 Timer 0 Clock Enable

IRQ IRQ Clock Enable

AFE Analog Front End Clock Enable

PCTRL Port Control Clock Enable

The PCTRL bit affects both PC0 and PC1.

FLSH Flash Controller Clock Enable

MI2C Master I2C Clock Enable

Table 11-22. Timer 0 Clock Enable Field Descriptions

Bit Value Function

0 Modulo timer clock is not enabled.

1 The clock to the modulo timer is enabled for this mode of operation.

Table 11-23. IRQ Clock Enable Field Descriptions

Bit Value Function

0 IRQ clock is not enabled. The module can issue only asynchronous interrupts (if so programmed)

1 The clock to the IRQ module is enabled. Rising and falling interrupts may be used. The IRQ clock must be enabled 
to program the interrupt, although it can be disabled afterwards if only level-sensitive interrupts are enabled.

Table 11-24. Analog Front End Clock Enable Field Descriptions

Bit Value Function

0 The AFE clock is not enabled.

1 The clock to the AFE is enabled for this mode of operation.

Table 11-25. Port Control Clock Enable Field Descriptions

Bit Value Function

0 The port control clock is not enabled. 

1 The clock to the port control module is enabled for this mode of operation.

Table 11-26. Flash Controller Clock Enable Field Descriptions

Bit Value Function

0 The flash controller clock is not enabled. The flash can still be read, but program/erase operations are not 
possible, nor can the flash controller registers be accessed.

1 The clock to the flash controller is enabled for this mode of operation.

Table 11-27. Master I2C Clock Enable Field Descriptions

Bit Value Function

0 The clock to the master I2C interface is not enabled. The module cannot be used in this mode of operation.

1 The clock to the master I2C interface is enabled for this mode of operation.
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Slave Port Clock Enable

This bit only controls the clock to the IP-Bus interface for the slave port. The slave ISP/I2C clock is 
supplied from off-device and the serial port can be used at all times. 

11.7.5 SIM Pin Mux Control Registers

The Pin Mux Control Registers are used to determine whether a device pin is programmed for Function 1, 
2 or 3 as defined in Section 11.7.5, “SIM Pin Mux Control Registers”.

A9 through A0 correspond to pins RGPIO Bit 9 through RGPIO Bit 0.

Table 11-28. Slave Port Clock Enable Field Descriptions

Bit Value Function

0 The clock to the slave port, IP-bus interface is not enabled. Registers in the slave mailbox cannot be accessed 
by the CPU.

1 The clock to the slave port, IP-bus interface is enabled for this mode of operation.

PMCR0 SIM_BASE + 0xA

7 6 5 4 3 2 1 0

R A9 A8 A7 A6 RESERVED A4

W

Reset 0 0 0 0 0 0 0 0

Figure 11-11. SIM Pin Mux Control Register 0

PMCR1 SIM_BASE + 0xB

7 6 5 4 3 2 1 0

R A3 A2 A1 A0

W

Reset 0 0 0 0 0 0 0 0

Figure 11-12. SIM Pin Mux Control Register 1

PMCR2 SIM_BASE + 0xC

7 6 5 4 3 2 1 0

R RESERVED A5

W

Reset 0 0 0 0 0 0 0 0

Figure 11-13. SIM Pin Mux Control Register 2
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A9 RGPIO Bit 9 Pin-Function Select

A8 RGPIO Bit 8 Pin-Function Select

A7 RGPIO Bit 7 Pin-Function Select

A6 RGPIO Bit 6 Pin-Function Select

A5 RGPIO Bit 5 Pin-Function Select

Table 11-29. RGPIO Bit 9 Pin-Function Select Field Descriptions

Bit Value Function

0 Pin function is BKGD/MS.

1 Pin function is RGPIO Bit 9

Table 11-30. RGPIO Bit 8 Pin-Function Select Field Descriptions

Bit Value Function

0 Pin function is RGPIO Bit 8

1 Pin function is PDB output B

Table 11-31. RGPIO Bit 7 Pin-Function Select Field Descriptions

Bit Value Function

00 Pin function is RGPIO Bit 7

01 Pin function is AN1

10 Pin Function is TPMCH.

11 RESERVED

Table 11-32. RGPIO Bit 6 Pin-Function Select Field Descriptions

Bit Value Function

00 Pin function is RGPIO Bit 6

01 Pin function is AN0

10 Pin Function is TPMCH0

11 RESERVED

Table 11-33. RGPIO Bit 5 Pin-Function Select Field Descriptions

Bit Value Function

00 Pin function is RGPIO Bit 5

01 Pin function is PDB output A

10 Pin function is INT_O (output interrupt from slave port)

11 RESERVED
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A4 RGPIO Bit 4 Pin-Function Select

When A4 is programmed as an interrupt, the IRQ function must also be enabled by setting 
IRQSC[IRQPE]. When operated as an interrupt, the pull-up/down enable is controlled by 
IRQSC[IRQPDD] instead of PT1PE[PE4]. At the same time, if IRQSC[IRQPDD] is enabled and 
IRQSC[IRQEDG] is 0, a pull-up is used. If IRQSC[IRQEDG] is 1, a pull-down is used.

A3 RGPIO Bit 3 Pin-Function Select

A2 RGPIO Bit 2 Pin-Function Select

A1 RGPIO Bit 1 Pin-Function Select

A0 RGPIO Bit 0 Pin-Function Select

Table 11-34.  Field Descriptions

Bit Value Function

0 Pin function is RGPIO Bit 4

1 Pin function is INT

Table 11-35. RGPIO Bit 3 Pin-Function Select Field Descriptions

Bit Value Function

0 Pin function is RGPIO Bit 3

1 Pin function is SDA1 (Master I2C data)

10 Pin function is SSB (SPI slave select)

11 RESERVED 

Table 11-36. RGPIO Bit 2 Pin-Function Select Field Descriptions

Bit Value Function

00 Pin function is RGPIO Bit 2

01 Pin function is SCL1 (Master I2C clock)

10 Pin function is SDO (SPI data out)

11 RESERVED

Table 11-37. RGPIO Bit 1 Pin-Function Select Field Descriptions

Bit Value Function

00 Pin function is SDA0 (slave I2C data)

01 Pin function is RGPIO Bit 1

10 Pin function is SDI (SPI data in)

11 RESERVED

Table 11-38. RGPIO Bit 0 Pin-Function Select Field Descriptions

Bit Value Function

00 Pin function is SCL0 (slave I2C clock)

01 Pin function is RGPIO Bit 0

10 Pin function is SCLK (SPI clock)

11 RESERVED
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Chapter 12  On-Chip Oscillator (CLKGEN)

12.1 Introduction
This device includes a single, on-chip oscillator that has several modes of operation, summarized in 
Table 12-1.

Oscillator controls for speed control and module enable are generated by the System Integration Module 
(SIM). These include:

HLb = H/L speed control to the oscillator

0 = Low speed. Normally used for  I.

1 = High speed. Normally used for  A and  D. 

pdwnb = Active-low, power-down control to the oscillator

0 = Oscillator is powered down on the next negative edge of oscout, leaving oscout = 0.

1 = Oscillator is powered.

In addition, the CLKGEN module contains controls for setting frame length1, oscillator trim and frame 
interval timer reset. It can also generate a fixed-frequency clock which is 1/8 x Fosc-low. This 
fixed-frequency clock (FFCLK) feeds the modulo timer and PWM module XCLK input.

12.2 High-Level Overview
In the discussions that follow, one oscillator cycle is defined from falling edge to the next falling edge. The 
high and low periods of each oscillator cycle are assumed to be equal. The entire cycle is at low speed or 
high speed. The two modes are not mixed within a cycle. Transitions from one mode to the next take place 
on the falling edge of the oscillator.

The oscillator is in high-speed mode when the device is actively taking measurements or the CPU is 
running. Low-speed mode is used to conserve power during the idle phase. Figure 12-1 shows 128 cycles 
in high-speed mode, and one in low-speed mode. The second signal in the figure is running at a rate of 
high-speed clock/64 and is for reference purposes only.

Table 12-1. Oscillator Modes

Mode HLb pdwnb

High-speed mode (Fosc-high = 8 MHz) 1 1

Low-speed mode (Fosc-low = Fosc-high/128) 0 1

Power down X 0

1. Frame: Length = 1/FR. See Section 4.2 for additional details.
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Figure 12-1. Oscillator Output Frequencies

Because the oscillator frequency varies over time, it is necessary to track how much time is spent in the 
high-speed mode and how much time in the low-speed mode. By tracking the two separately and scaling 
and adding the two numbers, we can derive a time base that is relatively invariant over time. The relative 
accuracy of any one point in time is limited by the time for one oscout cycle in low-speed mode. At 
128/8 MHz, that works out to be 16 s.

Figure 12-2 illustrates the basic mechanisms required. These are:

• Two-speed oscillator. This is contained within the “oscillator wrapper” function in the figure. The 
faster speed is nominally 8 MHz. The lower speed is this divided by 128 (62.5 KHz).

• Oscillator speed control “HLb.” This signal normally asserts low in reaction to a request by the 
CPU to terminate D. The timing of this request may vary from frame to frame, depending on CPU 
loading. HLb asserts high at the beginning of each frame.

• Seven-bit synchronous counter with carry. This counter only increments when the oscillator is in 
high-speed mode. When the counter rolls over from value $7F to $00, a one-cycle-long carry bit is 
output. A synchronous counter is required in this location to ensure that the carry bit can be 
properly fed forward to the frame interval timer. 

• This counter is not cleared between frames. Any residual count is used as a starting point in 
subsequent high-speed phases. This keeps the time-base error from accumulating over the course 
of many frames, though there will be jitter from the start of one phase to the next. The maximum 
amount of that jitter is equal to the 16 µs number quoted earlier.

• Frame interval timer. This counter controls the times between adjacent frames. The input to this 
counter is either oscout in low-frequency mode or the carry bit from the high-speed oscillator. The 
nominal rate of both is one pulse every 16 s. 

• The frame interval timer is automatically cleared at the end of each frame. Each new frame starts 
from a count of zero. The frame interval counter is also cleared on any exit from STOPNC. The 
counter should restart from zero when the oscillator power down negates.

• The control block allows software control of power-up/down state and frame interval. This block 
is configured as a peripheral on the eight-bit IP bus. Additional mode control is supported by the 
SIM. This will be discussed in more detail in Chapter 11, “System Integration Module (SIM)”.

• A pin of the device can be programmed to wake the device from deep-sleep mode (STOPNC). In 
that mode, the oscillator is completely shut down. An asynchronous event on the pin is sufficient 
to restart the oscillator in high-speed mode and route the device directly into D (presumably for 
device configuration or other wake-up related task). Again, the frame interval counter is cleared as 
a result of wake-up from STOPNC.

• The fixed-frequency clock runs at 1/8 x Fosc-low. This clock, which is available to the TPM and 
MTIM modules, will normally be disabled for applications which require highest sensor accuracy. 

oscout

high speed / 64
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Figure 12-2. Oscillator Functional Block Diagram

Figure 12-2 gives some insight about CLKGEN Module internal circuits as well as its interaction with the 
System Integration Module. This block diagram is mainly a simplified view of the oscillator that illustrates 
its control and operation. The image is not meant to fully reflect the actual hardware implementation.

12.3 Module Memory Map
The CLKGEN module is organized as a memory-mapped peripheral on the eight-bit IP Bus. Table 12-2 
specifies the module memory map. Details of each register are provided in the following section.

Table 12-2. Module Memory Map

Register Name Offset Function

CK_OSCTRL $0 Oscillator Control Register

RESERVED $1 Reserved Location

Divide
by 8

resetb

Oscillator
Wrapper

Analog
Front End

enable

Seven-Bit
Synchronous 
Counter with 

Carry

resetb

CLKGEN
Control Block

19-Bit 
Frame 
Interval 
Timer

resetb

CLKGEN Module  

System 
Integration 

Module

0

1

End A

Start A

HLb and
pdwnb
Signals

OSCOUT

FFCLK
-Fosc-low/8

FFCEN and (~STOP | FFSEN)

-Fosc-low

HLb

OSCOUT

resetb from SIM

Edge 
Dectect

Clear

Start of Frame

countH

Both 7-bit and frame 
interval timers will 
be reset whenever 
the device exists the 
STOPNC mode.
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12.4 Registers Descriptions

12.4.1 CK_OSCTRL - Oscillator Control Register

FCEN Frame Counter Enable

This bit disabled both the Frame Interval Counter and the seven-bit synchronous counter that tracks fast 
clocks. Both counters restart from zero when re-enabled.

FFCEN Fixed Frequency Clock Enable

The CLKGEN module can generate a fixed frequency clock of frequency 1/8 x Fosc-low. This clock is 
inactive during reset. This clock is subject to a significant amount of jitter (approximately ±Fosc-low

-1) as 
it is reconstructed from two mutually exclusive (in time) frequencies.

The divider for FFCLK is set to zero during system reset and STOPNC.

FFSEN Fixed Frequency Clock STOP Enable

This bit only applies when FFCEN = 1.

RESERVED $2 Reserved Location

RESERVED $3 Reserved Location

CK_OSCTRL CKGEN_BASE + 0x0

7 6 5 4 3 2 1 0

R FCEN FFCEN FFSEN FLE

W

Reset 1 0 0 0 0 0 0 0

Figure 12-3. Oscillator Control Register

Bit Value Function

0 Frame Interval Counter not enabled.

1 Frame Interval Counter enabled (default).

Bit Value Function

0 FFCLK is not enabled.

1 FFCLK enabled during RUN. Operation in STOPSC and STOPFC is dependent upon the FFSEN bit.

Bit Value Function

0 FFCLK is disabled in all STOP modes.

1 FFCLK is enabled during STOPFC and STOPSC. It is disabled during STOPNC. 

Table 12-2. Module Memory Map

Register Name Offset Function
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FLE Frame Length Exponent

The interval between frames is expressed as TF = 2FLE X Posc-low. FLE is any value between $04 and $12. 
Table 12-3 details possible values of FLE and corresponding values of tF. 

The Frame Interval Timer is reset to zero whenever the FLE field is written (even if the value does not 
change). Additionally, the frame interval counter is held inactive and set to zero whenever FLE is outside 
of the range $04 to $12.

Switching FLE from an inactive to an active value has the effect of starting the frame.

12.5 Interrupts
The CLKGEN module generates the start A signal which acts as a wake-up to the analog front end. A is 
not an interrupt. But the CLKGEN module can be programmed to generate a D interrupt instead of the 
start A signal. This will bypass the analog phase and go straight to the digital phase.

Under certain circumstances, the A signal could result in the System Integration Module (SIM) generating 
an interrupt to signal a start-frame error. See “Peripheral Clock Enable Registers” on page 174 for details.

Table 12-3. Frame Interval and Clocks as a Function of FLE (Assumed 200 ms FA Duration)

FLE 2FLE tF (secs)
Max Frames 
per Second

Max 
Fast-Clock 
Cycles per 

Frame

D Duration 
(µs)

Max 
Fast-Clock 

Cycles per D

% CPU 
Available

to D

7 128 2.05E-03 488.28 16,384 1,848.00 14,784 90.234%

8 256 4.10E-03 244.14 32,768 3,896.00 31,168 95.117%

9 512 8.19E-03 122.07 65,536 7,992.00 63,936 97.559%

10 1024 1.64E-02 61.04 131,072 16,184.00 129,472 98.779%

11 2,048 3.28E-02 30.52 262,144 32,568.00 260,544 99.390%

12 4,096 6.55E-02 15.26 524,288 65,336.00 522,688 99.695%

13 8,192 1.31E-01 7.63 1,048,576 130,872.00 1,046,976 99.847%

14 16,384 2.62E-01 3.81 2,097,152 261,944.00 2,095,552 99.924%
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Chapter 13  Programmable Delay Block (PDB)

13.1 Introduction

13.1.1 Features
• Positive transition of a trigger input will initiate the counter. The trigger source is software 

programmable to be one of the following:

— A started

— D started

— Software trigger

• Supports two output signals. Each has an independently controlled delay from the trigger_input.

• Digital comparator outputs can be used to schedule precise edge placement for a pulsed output.

• Continuous-trigger or single-shot mode supported.

• Each output is independently enabled.

13.1.2 Modes of Operation

Modes of operation include:

• Disabled: Counter is off and both A and B outputs are low.

• Enabled One Shot: Counter is enabled and restarted at count zero upon receiving a positive edge 
on the input trigger. A and B will see only one output transition per input trigger.

• Enabled Continuous: Counter is enabled and restarted at count zero. The counter will be rolled over 
to zero again when the count reaches the value specified in the MOD register and the counting will 
be restarted. This enables a continuous stream of output pulses as a result of a single-trigger input.
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13.1.3 Block Diagram

Figure 13-1 illustrates the basic structure of the PDB block. It contains a single counter whose output is 
compared against three different digital values. The delayA and delayB determine the time between 
assertion of the trigger input to the point that changes in the output signals are initiated. These times are 
defined as:

• Trigger input to A = prescaler x (delayA + 1 peripheral bus clock cycle)

• Trigger input to B = prescaler x (delayB + 1 peripheral bus clock cycle)

• Add one additional peripheral bus-clock cycle when using both A and B comparators to schedule 
both edges on an output pulse.

The third digital value, modulus, is used to reset the counter back to zero at the end of the count. If 
CSR[CONT] is set, the counter will then resume a new count. Otherwise, the timer operation will cease 
until the next trigger input event occurs.

Figure 13-1. MMA955xL PDB Block Diagram

The pulsed mode is shown in Figure 13-2. In this case, A* and B* are used to precisely schedule the rising 
and falling edges for the output waveform.
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Figure 13-2. Trigger Pulsed Output Operation

13.2 Memory Map and Registers

13.2.1 Memory Map

13.2.2 Registers Descriptions

13.2.2.1 PDB Control and Status Register (CSR)

This register contains status and control bits for the Programmable Delay Block. The counter is enabled if 
EN has been set to 1. In general, you should reconfigure the module only when the module is not enabled 
(EN = 0).

   

Table 13-1. PDB Memory Map

Offset Register Description

$00 CSR PDB Control and Status Register

$02 DELAYA PDB Delay A Register

$04 DELAYB PDB Delay B Register

$06 MOD PDB Counter Modulus Register

$08 COUNT PDB Counter Value (READ ONLY)

Base + $0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PRESCALER SB SA IENB IENA BOS AOS CONT SW
TRIG

TRIGSEL EN

W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Reserved or unused

Figure 13-3. Programmable Delay Block Control and Status Register (CSR)

trigger_input

A*

B*

P
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Table 13-2. CSR Register Field Descriptions

Field Description

15-13
PRESCALER

Clock Prescaler Select
000 = Timer uses peripheral clock.
001 = Timer uses peripheral clock/2.
010 = Timer uses peripheral clock/4.
011 = Timer uses peripheral clock/8.
100 = Timer uses peripheral clock/16.
101 = Timer uses peripheral clock/32.
110 = Timer uses peripheral clock/64.
111 = Timer uses peripheral clock/128.
This value should be changed only when the module is not enabled. The pulse width of outputs A and B is 
also impacted by this field. Larger prescalers result in longer pulse widths as would be expected.

12
SB

Sticky B
0 = B* has not triggered.
1 = B* has triggered.
This bit is sticky. It will remain at 1 once set, even after B goes low. Clear this bit by writing a 1 to this location. 
SB is the source for the interrupt enabled by IENB.

11
SA

Sticky A
0 = A* has not triggered.
1 = A* has triggered.
This bit is sticky. It will remain at 1 once set, even after A goes low. Clear this bit by writing a 1 to this location. 
SA is the source for the interrupt enabled by IENA.

10
IENB

Interrupt Enable B
0 = Interrupt B is not enabled.
1 = Assert an interrupt when B* triggers and SB goes high. The interrupt is cleared by writing a 1 to SB.

9
IENA

Interrupt Enable A
0 = Interrupt A is not enabled
1 = Assert an interrupt when A* triggers and SA goes high. The interrupt is cleared by writing a 1 to SA.

8-7
BOS

B Output Select
00 = B output is zero.
01 = B=B*
10 = PulseOut (P)
11 = RESERVED

6-5
AOS

A Output Select
00 = A output is zero.
01 = A=A*
10 = PulseOut (P)
11 = RESERVED

4
CONT

Continuous Mode Enable
0 = Module is in OneShot mode
1 = Module is in continuous mode

3
SWTRIG

Software Trigger - When TRIGSEL=2’b00 and the module is enabled, writing a 1 to this field will trigger 
a reset and restart of the counter. This bit always reads as 0.
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13.2.2.2 PDB Delay A and Delay B Registers (DELAYA and DELAYB)

These registers are used to specify the delay from assertion of TriggerIn to assertion of A and B out. The 
delay is in terms of peripheral clock cycles. These registers should only be changed when the module is 
not enabled.

2-1
TRIGSEL

Input Trigger Select
00 = Software trigger
01 = A started
10 =  D started
11 = RESERVED
The D started option is independent of the interrupt enable for D in the FCSR. It can be used even when 
that interrupt is not enabled. The timing is the same either way.

0
EN

Module Enable
0 = Module is not enabled. Outputs are 0.
1 = Module is enabled for use.

Base + $0002

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R DELAYA

W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Reserved or unused

Figure 13-4. PDB Delay A Register (DELAYA)

Base + $0004

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R DELAYB

W

RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Reserved or unused

Figure 13-5. PDB Delay A Register (DELAYB)

Table 13-2. CSR Register Field Descriptions (continued)

Field Description
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13.2.2.3 PDB Modulus Register (MOD)

This register specifies the period of the counter in terms of peripheral-bus cycles. When the counter 
reaches this value, it will be reset back to all 0s. If CSR[CONT] is set to one, the count will begin anew.

This register should be changed only when the module is not enabled. 

13.2.2.4 PDB COUNT Register (COUNT)

This register can be used to read the current value of the counter. It is READ ONLY.

When counting starts, the register switches to 0x0001. When a rollover occurs, it will roll over to 0x0001.

13.2.3 Functional Description

13.2.3.1 Miscellaneous Concerns and SoC Integration

• A and B are defined to be glitch-free.

• Additional trigger events—after the first, but before the timer times out—will cause the counter to 
restart.

• Using the prescaler impacts the timing resolution.

Use of prescalers > 1 limit the count/delay accuracy in terms of peripheral clocks (to the modulus of the 
prescaler value). If the prescaler is set to div 2 then the only values of total peripheral clocks that can be 
detected are even values, if div is set to 4 then the only values of total peripheral clocks that can be decoded 

Base + $0006

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R MOD

W

RESET 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

= Reserved or unused

Figure 13-6. PDB Modulus Register (MOD) 

Base + $0008

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R COUNT

W

RESET 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

= Reserved or unused

Figure 13-7. PDB COUNT Register (COUNT) 



Programmable Delay Block (PDB)

MMA955xL Intelligent Motion-Sensing Platform, Rev. 0

Freescale Semiconductor, Inc. 191

as detected are mod(4) and so forth. If a user wanted to set a really long delay value and used div 128, that 
person would be limited to an resolution of 128 bus clocks.

Therefore, use the lowest possible prescaler for a given application.

13.3 Resets
This module has a single reset input, corresponding to the chip-wide peripheral reset.

13.4 Clocks
This module has a single clock input, the IP Bus peripheral clock.

13.5 Interrupts
This module has two possible interrupts: One associated with the A output and one with the B output.
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Chapter 14  Port Controls

14.1 MMA955xL Port Control Customizations
There are two instances of the port-control module on the MMA955xL. Each port control module can 
control up to eight pins.

PC0 controls drive strength, slew rate and pull-up controls for RGPIO[9:8]. PC1 controls these parameters 
for RGPIO[7:0]. Specifically, the mapping is:

14.1.1 General Rules
• PCxSE = 0 (output slew rate control disabled)

• PCxDS = 0 (low output-drive strength)

• PCxIFE = 1 (input filters enabled)

• PCxPE = 0 (pull-ups not enabled)

• I2C pins are open-drain when the pins are configured for use as I2C in the SIM Pin Mux Control 
Registers (See Section 11.7.5, “SIM Pin Mux Control Registers”.)

Table 14-1. RPGIO Port Controls

RPGIO Bit # Port Control

9 PC0[1]

8 PC0[0]

7 PC1[7]

6 PC1[6]

5 PC1[5]

4 PC1[4]

3 PC1[3]

2 PC1[2]

1 PC1[1]

0 PC1[0]
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14.1.2 Exceptions to the General Rules

The BKGD/MS pin (RGPIO9) defaults to high drive strength when no slew rate control is enabled by 
pull-up resistors.

When A4 is programmed as interrupt, the pull-up/down enable is controlled by the IRQSC[IRQPDD] 
signal, instead of PC1PE[PE4]. At the same time, if the IRQSC[IRQPDD] signal is enabled and 
IRQSC[IRQEDG] is 0, a pull-up resistor is used. If IRQSC[IRQEDG] is 1, a pull-down resistor is used.

14.1.3 Pins Not Covered by the Port Control Modules

The RESETB pin is not multiplexed with GPIO, so the RESET B pad cell is not confirgurable. The 
RESETB pin’s fixed configuration is as follows:

• Low output drive strength

• Input filter enabled

• Pull-up resistor enabled

• The output buffer of the RESETB pin is open drain.(For details, see Section 3.2.3, “RESETB”.)

14.2 Standard Pin Controls

14.2.1 Pin Controls Overview

A set of registers (shown in Figure 14-1) control pull-ups, slew-rate, drive-strength and input-filter enables 
for the pins. That set of registers also may be used in conjunction with the peripheral functions on these 
pins.

These registers are associated with the parallel I/O ports and Rapid GPIO (RGPIO) ports, but operate 
independently of both.
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Figure 14-1. Pin Control Logic Block Diagram

14.2.2 Pin Controls Programming Model

These registers control the pull-ups, slew rate, drive strength, and input filter for all the pins and may be 
used for the peripheral functions on these pins.

For the absolute address assignments for all registers, see the tables in Chapter 5, “Memory Maps”. That 
section refers to registers and control bits only by their names.

NOTE
A Freescale-provided equate or header file normally is used to translate 
these names into the appropriate absolute addresses.

Table 14-2. Register Set Summary

Register Description Access

PCxPE Port x Pull Enable Register read/write

PCxSE Port x Slew Rate Enable Register read/write

PCxDS Port x Drive Strength Selection Register read/write

PCxIFE Port x Input Filter Enable Register read/write

IP
 B

us

PCxPE[n] Port Pull-up Enable

Read xPE

Write xPE

PCxDS[n] Port Drive Strength Control
Write xDS

Read xDS

PCxSE[n] Port Slew Rate Control
Write xSE

Read xSE

PCxIFE[n] Port Input Filter Enable
Write xIFE

Read xIFE
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14.2.2.1 Port x Pull-Up Enable Register (PCxPE)

An internal pull-up device can be enabled for each port pin by setting the corresponding bit in the 
pull-up-enable register (PCxPE[n]). The pull-up device is disabled if any of the following occur:

• If the pin is configured as an output by the parallel I/O control logic

• If the pin is configured as disabled by a shared (and controlling) peripheral function

• If the pin is controlled by an analog function

• There is a power reset, except for the RESETB and BKGD/MS pins

Each of these control bits determines if the internal pull-up device is enabled for the associated PCx pin. 
For Port x pins that are configured as outputs, these bits have no effect and the internal pull-up devices are 
disabled.

14.2.2.2 Port x Slew Rate Enable Register (PCxSE)

Slew rate control can be enabled for each port pin by setting the corresponding bit in the slew rate control 
register (PCxSE[n]). When enabled, slew control limits the rate at which an output can transition in order 
to reduce EMC emissions. Slew rate control has no effect on pins that are configured as inputs.

Each of these control bits determines if the output slew rate control is enabled for the associated PCx pin. 
For Port x pins configured as inputs, these bits have no effect. 

7 6 5 4 3 2 1 0

R PCxPE7 PCxPE6 PCxPE5 PCxPE4 PCxPE3 PCxPE2 PCxPE1 PCxPE0

W

Reset: 0 0 0 0 0 0 0 0

Figure 14-2. Internal Pull-Up Enable for Port x Register (PCxPE)

Table 14-3. Port x Pull Enable Bit Descriptions

PCxPEn Bit Value Function

0 Internal pull-up device disabled for Port x bit n.

1 Internal pull-up device enabled for Port x bit n.

 7 6 5 4 3 2 1 0

R PCxSE7 PCxSE6 PCxSE5 PCxSE4 PCxSE3 PCxSE2 PCxSE1 PCxSE0

W

Reset: 0 0 0 0 0 0 0 0

Figure 14-3. Slew-Rate Enable for Port x Register (PCxSE)

Table 14-4. Port x Slew-Rate Enable Bit Descriptions

PCxSEn Bit Value Function

0 Output slew rate control disabled for Port x bit n.

1 Output slew rate control enabled for Port x bit n.
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14.2.2.3 Port x Drive Strength Selection Register (PCxDS)

An output pin can be selected to have high output drive strength by setting the corresponding bit in the 
drive-strength select register (PCxDS[n]). When high drive is selected, a pin is capable of sourcing and 
sinking greater current. Even though every I/O pin can be selected as high drive, users must ensure that 
the total current source and sink limits for the MCU are not exceeded.

Drive-strength selection is intended to affect the DC behavior of I/O pins. However, the AC behavior is 
also affected. High drive allows a pin to drive a greater load with the same switching speed as a 
low-drive-enabled pin into a smaller load. Because of this, the EMC emissions may be affected by 
enabling pins as high drive.

Each of these control bits selects between low- and high-output drive for the associated PCx pin. For Port 
x pins configured as inputs, these bits have no effect.

14.2.2.4 Port x Input Filter Enable Register (PCxIFE)

The pad cells on this device incorporate optional, low-pass filters on the digital input functions. These are 
enabled by setting the appropriate bit in the input-filter-enable register (PCxIFE[n]). When set, a low-pass 
filter (with a bandwidth of 10 MHz to 30 MHz) is enabled in the logic input path. When cleared, the filter 
is bypassed.

 7 6 5 4 3 2 1 0

R PCxDS7 PCxDS6 PCxDS5 PCxDS4 PCxDS3 PCxDS2 PCxDS1 PCxDS0

W

Reset: 0 0 0 0 0 0 0 0

Figure 14-4. Drive Strength Selection for Port x Register (PCxDS)

Table 14-5. Port x Drive Strength Selection Bit Descriptions

PCxDSn Bit Value Function

0 Low output drive strength selected for Port x bit n

1 High output drive strength selected for Port x bit n.

 7 6 5 4 3 2 1 0

R PCxIFE7 PCxIFE6 PCxIFE5 PCxIFE4 PCxIFE3 PCxIFE2 PCxIFE1 PCxIFE0

W

Reset: 1 1 1 1 1 1 1 1

Figure 14-5. Port x Input Filter Enable Register (PCxIFE)

Table 14-6. Port x Input Filter Enable Bit Descriptions

PCxIFEn Bit Value Function

0 Input filter disabled

1 Input filter enabled
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Chapter 15  Rapid GPIO (RGPIO)

15.1 Introduction
The Rapid GPIO (RGPIO) module provides a 16-bit, general-purpose I/O module directly connected to 
the processor’s high-speed, 32-bit local bus. This connection and support for single-cycle, zero-wait-state 
data transfers allows the RGPIO module to provide improved pin performance when compared to more 
traditional GPIO modules located on the internal slave peripheral bus.

Many of the pins associated with a device may be used for several different functions. Their primary 
functions are to provide external interfaces to access off-chip resources. When not used for their primary 
function, many of the pins may be used as general-purpose, digital I/O (GPIO) pins. The definition of the 
exact pin functions and the affected signals is specific to each device. Every GPIO port, including the 
RGPIO module, has registers that configure, monitor and control the port pins.

15.1.1 Overview

The RGPIO module provides 16-bits of high-speed GPIO functionality, mapped to the processor’s bus. 
The key features of this module include:

• 16 bits of high-speed GPIO functionality connected to the processor’s local 32-bit bus

• Memory-mapped device connected to the ColdFire core’s local bus

— Support for all access sizes: byte, word, and longword

— All reads and writes complete in a single data phase cycle for zero wait-state response

• Data bits can be accessed directly or via alternate addresses to provide set, clear, and toggle 
functions

— Alternate addresses allow set, clear, toggle functions using simple store operations without the 
need for read-modify-write references

• Unique data direction and pin enable control registers

• Package pin toggle rates typically 1.5–3.5x faster than comparable pin mapped onto peripheral bus

A simplified block diagram of the RGPIO module is shown in Figure 15-1. The details of the pin muxing 
and pad logic are device -specific.
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Figure 15-1. RGPIO Block Diagram

15.1.2 Features

The major features of the RGPIO module providing 16-bits of high-speed general-purpose input/output 
are:

• Small memory-mapped device connected to the processor’s local bus

— All memory references complete in a single cycle to provide zero wait-state responses

— Located in processor’s high-speed clock domain

• Simple programming model

— Four 16-bit registers, mapped as three program-visible locations

– Register for pin enables

– Register for controlling the pin data direction

– Register for storing output pin data

– Register for reading current pin state

– The two data registers (read, write) are mapped to a single program-visible location
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— Alternate addresses to perform data set, clear, and toggle functions using simple writes

— Separate read and write programming model views enable simplified driver software

– Support for any access size (byte, word, or longword)

15.1.3 Modes of Operation

The RGPIO module does not support any special modes of operation. As a memory-mapped device 
located on the processor’s high-speed local bus, it responds based strictly on memory address and does not 
consider the operating mode (supervisor, user) of its references.

15.2 External Signal Description

15.2.1 Overview

As shown in Figure 15-1, the RGPIO module’s interface to external logic is indirect via the device 
pin-muxing and pad logic. For a list of the associated RGPIO input/output signals, see Table 15-1.

15.2.2 Detailed Signal Descriptions

Table 15-2 provides descriptions of the RGPIO module’s input and output signals.

15.3 Memory Map/Register Definition
The RGPIO module provides a compact 16-byte programming model based at a system memory address 
of 0x_0000 (noted as RGPIO_BASE throughout the chapter). As previously noted, the programming 

Table 15-1. RGPIO Module External I/O Signals

Signal Name Type Description

RGPIO[15:0] I/O RGPIO Data Input/Output

Table 15-2. RGPIO Detailed Signal Descriptions

Signal Type Description

RGPIO[15:0] I/O Data Input/Output. When configured as an input, the state of this signal is reflected in the read data 
register. When configured as an output, this signal is the output of the write data register.

State 
Meaning

Asserted—
Input: Indicates the RGPIO pin was sampled as a logic high at the time of the read.
Output: Indicates a properly-enabled RGPIO output pin is to be driven high.

Negated—
Input: Indicates the RGPIO pin was sampled as a logic low at the time of the read.
Output: Indicates a properly-enabled RGPIO output pin is to be driven low.

Timing Assertion/Negation—
Input: Anytime. The input signal is sampled at the rising-edge of the processor’s 
high-speed clock on the data phase cycle of a read transfer of this register.
Output: Occurs at the rising-edge of the processor’s high-speed clock on the data 
phase cycle of a write transfer to this register. This output is asynchronously 
cleared by system reset.
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model views are different between reads and writes as this enables simplified software for manipulation 
of the RGPIO pins. Additionally, the programming model can be referenced using any operand size access 
(byte, word, longword). Performance is typically maximized using 32-bit accesses.

NOTE
Writes to the two-byte fields at RGPIO_BASE + 0x8 and 
RGPIO_BASE + 0xC are allowed, but do not affect any program-visible 
register within the RGPIO module.

15.3.1 RGPIO Data Direction (RGPIO_DIR)

The read/write RGPIO_DIR register defines whether a properly-enabled RGPIO pin is configured as an 
input or output. At reset, all bits in the RGPIO_DIR are cleared. Setting any bit in the RGPIO_DIR register 
configures a properly-enabled RGPIO port pin as an output, while clearing configures the RGPIO port pin 
as an input.

Table 15-3. RGPIO Write Memory Map

Address Register
Width 
(bits)

Access Reset Value Section/Page

0x00 RGPIO Data Direction Register (RGPIO_DIR) 16 W 0x0000 15.3.1/15-202

0x02 RGPIO Write Data Register (RGPIO_DATA) 16 W 0x0000 15.3.2/15-203

0x04 RGPIO Pin Enable Register (RGPIO_ENB) 16 W 0x0000 15.3.3/15-204

0x06 RGPIO Write Data Clear Register (RGPIO_CLR) 16 W N/A 15.3.4/15-204

0x0A RGPIO Write Data Set Register (RGPIO_SET) 16 W N/A 15.3.5/15-205

0x0E RGPIO Write Data Toggle Register (RGPIO_TOG) 16 W N/A 15.3.6/15-205

Table 15-4. RGPIO Read Memory Map

Address Register
Width 
(bits)

Access Reset Value Section/Page

0x00 RGPIO data direction register (RGPIO_DIR) 16 R 0x0000 15.3.1/15-202

0x02 RGPIO write data register (RGPIO_DATA) 16 R 0x0000 15.3.2/15-203

0x04 RGPIO pin enable register (RGPIO_ENB) 16 R 0x0000 15.3.3/15-204

0x06 RGPIO write data register (RGPIO_DATA) 16 R 0x0000 15.3.2/15-203

0x08 RGPIO data direction register (RGPIO_DIR) 16 R 0x0000 15.3.1/15-202

0x0A RGPIO write data register (RGPIO_DATA) 16 R 0x0000 15.3.2/15-203

0x0C RGPIO data direction register (RGPIO_DIR) 16 R 0x0000 15.3.1/15-202

0x0E RGPIO write data register (RGPIO_DATA) 16 R 0x0000 15.3.2/15-203
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15.3.2 RGPIO Data (RGPIO_DATA)

The RGPIO_DATA register specifies the write data for a properly-enabled RGPIO output pin or the 
sampled read data value for a properly-enabled input pin. An attempted read of the RGPIO_DATA register 
returns undefined data for disabled pins because the data value is dependent on the device -level pin 
muxing and pad implementation. The RGPIO_DATA register is read/write. At reset, all bits in the 
RGPIO_DATA registers are cleared.

To set bits in a RGPIO_DATA register, directly set the RGPIO_DATA bits or set the corresponding bits in 
the RGPIO_SET register. To clear bits in the RGPIO_DATA register, directly clear the RGPIO_DATA 
bits, or clear the corresponding bits in the RGPIO_CLR register. Setting a bit in the RGPIO_TOG register 
inverts (toggles) the state of the corresponding bit in the RGPIO_DATA register.

Offset:
RGPIO_Base + 0x0 (RGPIO_DIR)
RGPIO_Base + 0x8
RGPIO_Base + 0xC

Access: Read/write
Read-only
Read-only

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R DIR

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 15-2. RGPIO Data Direction Register (RGPIO_DIR)

Table 15-5. RGPIO_DIR Field Descriptions

Field Description

15–0
DIR

RGPIO data direction.
0 A properly-enabled RGPIO pin is configured as an input
1 A properly-enabled RGPIO pin is configured as an output

Offset:

RGPIO_Base + 0x2 (RGPIO_DATA)
RGPIO_Base + 0x6
RGPIO_Base + 0xA
RGPIO_Base + 0xE

Access:

Read/write
Read/Indirect Write
Read/Indirect Write
Read/Indirect Write

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
DATA

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 15-3. RGPIO Data Register (RGPIO_DATA)
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15.3.3 RGPIO Pin Enable (RGPIO_ENB)

The RGPIO_ENB register configures the corresponding package pin as a RGPIO pin instead of the normal 
GPIO pin mapped onto the peripheral bus.

The RGPIO_ENB register is read/write. At reset, all bits in the RGPIO_ENB are cleared, disabling the 
RGPIO functionality.

15.3.4 RGPIO Clear Data (RGPIO_CLR)

The RGPIO_CLR register provides a mechanism to clear specific bits in the RGPIO_DATA by performing 
a simple write. Clearing a bit in RGPIO_CLR clears the corresponding bit in the RGPIO_DATA register. 
Setting it has no effect. The RGPIO_CLR register is write-only; reads of this address return the 
RGPIO_DATA register.

Table 15-6. RGPIO_DATA Field Descriptions

Field Description

15–0
DATA

RGPIO Data
0 A properly-enabled RGPIO output pin is driven with a logic 0, or a properly-enabled RGPIO input pin was read as 
a logic 0
1 A properly-enabled RGPIO output pin is driven with a logic 1, or a properly-enabled RGPIO input pin was read as 
a logic 1

Offset: RGPIO_Base + 0x4 (RGPIO_ENB) Access: Read/write

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R ENB

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 15-4. RGPIO Enable Register (RGPIO_ENB)

Table 15-7. RGPIO_ENB Field Descriptions

Field Description

15–0
ENB

RGPIO enable.
0 The corresponding package pin is configured for use as a normal GPIO pin, not a RGPIO
1 The corresponding package pin is configured for use as a RGPIO pin

Offset: RGPIO_Base + 0x6 (RGPIO_CLR) Access: Write-only

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W CLR

Reset — — — — — — — — — — — — — — — —

Figure 15-5. RGPIO Clear Data Register (RGPIO_CLR)
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15.3.5 RGPIO Set Data (RGPIO_SET)

The RGPIO_SET register provides a mechanism to set specific bits in the RGPIO_DATA register by 
performing a simple write. Setting a bit in RGPIO_SET asserts the corresponding bit in the RGPIO_DATA 
register. Clearing it has no effect. The RGPIO_SET register is write-only; reads of this address return the 
RGPIO_DATA register.

15.3.6 RGPIO Toggle Data (RGPIO_TOG)

The RGPIO_TOG register provides a mechanism to invert (toggle) specific bits in the RGPIO_DATA 
register by performing a simple write. Setting a bit in RGPIO_TOG inverts the corresponding bit in the 
RGPIO_DATA register. Clearing it has no effect. The RGPIO_TOG register is write-only; reads of this 
address return the RGPIO_DATA register.

Table 15-8. RGPIO_CLR Field Descriptions

Field Description

15–0
CLR

RGPIO clear data.
0 Clears the corresponding bit in the RGPIO_DATA register
1 No effect

Offset: RGPIO_Base + 0xA (RGPIO_SET) Access: Write-only

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W SET

Reset — — — — — — — — — — — — — — — —

Figure 15-6. RGPIO Set Data Register (RGPIO_SET)

Table 15-9. RGPIO_SET Field Descriptions

Field Description

15–0
SET

RGPIO set data.
0 No effect
1 Sets the corresponding bit in the RGPIO_DATA register

Offset: RGPIO_Base + 0xE (RGPIO_TOG) Access: Write-only

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W TOG

Reset — — — — — — — — — — — — — — — —

Figure 15-7. RGPIO Toggle Data Register (RGPIO_TOG)
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15.4 Functional Description
The RGPIO module is a relatively simple design with its behavior controlled by the program-visible 
registers defined within its programming model.

The RGPIO module is connected to the processor’s local, two-stage pipelined bus with the stages of the 
ColdFire core’s operand execution pipeline (OEP) mapped directly onto the bus. This structure allows the 
processor access to the RGPIO module for single-cycle, pipelined reads and writes with a zero wait-state 
response (as viewed in the system-bus, data-phase stage). 

15.5 Initialization Information
The reset state of the RGPIO module disables the entire 16-bit data port. Prior to using the RGPIO port, 
software typically defines the contents of the data register (RGPIO_DATA), configures the pin direction 
(RGPIO_DIR) and sets the appropriate bits in the pin-enable register (RGPIO_ENB).

15.6 Application Information
This section examines the relative performance of the RGPIO output pins for two simple applications.

• The processor executes a loop to toggle an output pin for a specific number of cycles, producing a 
square-wave output.

• The processor transmits a 16-bit message using a three-pin, SPI-like interface with a serial clock, 
serial chip select and serial data bit.

In both applications, the relative speed of the GPIO output is presented as a function of the location of the 
output bit (RGPIO versus peripheral bus GPIO).

15.6.1 Application 1: Simple Square-Wave Generation

In this example, several different instruction loops are executed, each generating a square-wave output 
with a 50 percent duty cycle. For this analysis, the executed code is mapped into the processor’s RAM.

The following instruction loops were studied:

• BCHG_LOOP — In this loop, a bit change instruction was executed using the GPIO data byte as 
the operand. This instruction performs a read-modify-write operation and inverts the addressed bit. 
A pulse counter is decremented until the appropriate number of square-wave pulses have been 
generated.

• SET+CLR_LOOP — For this construct, two store instructions are executed: one to set the GPIO 
data pin and another to clear it. Single-cycle, NOP instructions (the tpf opcode) are included to 

Table 15-10. RGPIO_TOG Field Descriptions

Field Description

15–0
TOG

RGPIO toggle data.
0 No effect
1 Inverts the corresponding bit in RGPIO_DATA
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maintain the 50-percent duty cycle of the generated square wave. The pulse counter is decremented 
until the appropriate number of square-wave pulse have been generated.

The square-wave output frequency was measured with the relative performance results presented in 
Table 15-11. The relative performance is stated as a fraction of the processor’s operating frequency, 
defined as f MHz. The performance of the BCHG loop, operating on a GPIO output, is selected as the 
reference.

NOTE
The square-wave frequency is measured from rising edge to rising edge, 
where the output wave has a 50-percent duty cycle.

15.6.2 Application 2: 16-bit Message Transmission using SPI Protocol

In this second example, a 16-bit message is transmitted using three programmable output pins. The output 
pins include a serial clock, an active-high chip select and the serial data bit. The software is configured to 
sample the serial data bit at the rising edge of the clock with the data sent in a most-significant to 
least-significant bit order. The resulting 3-bit output is shown in Figure 15-8.

Figure 15-8. GPIO SPI Example Timing Diagram

For this example, the processing of the SPI message is considerably more complex than the generation of 
a simple square wave of the previous example. The code snippet used to extract the data bit from the 
message and build the required GPIO data register writes is shown in Figure 15-9.
# subtest: send a 16-bit message via a SPI interface using a RGPIO

                      # the SPI protocol uses a 3-bit value: clock, chip-select, data
                      # the data is centered around the rising-edge of the clock
                         
                              align   16
                      send_16b_spi_message_rgpio:
00510: 4fef fff4              lea     -12(%sp),%sp        # allocate stack space
00514: 48d7 008c              movm.l  &0x8c,(%sp)         # save d2,d3,d7
00518: 3439 0080 0582         mov.w   RAM_BASE+message2,%d2   # get 16-bit message
0051e: 760f                   movq.l  &15,%d3             # static shift count

Table 15-11. Square-Wave Output Performance

Loop

Peripheral Bus-mapped GPIO RGPIO

Square-Wave
Frequency

Frequency at
CPU f = 50 MHz

Relative
Speed

Square-Wave
Frequency

Frequency at
CPU f = 50 MHz

Relative
Speed

bchg (1/24)  f MHz 2.083 MHz 1.00x (1/14)  f MHz 3.571 MHz 1.71x

set+clr (+toggle) (1/12)  f MHz 4.167 MHz 2.00x (1/8)  f MHz 6.250 MHz 3.00x

15 14 13 2 1 0

gpio_cs

gpio_clk

gpio_data



Rapid GPIO (RGPIO)

MMA955xL Intelligent Motion-Sensing Platform, Rev. 0

208 Freescale Semiconductor, Inc.

00520: 7e10                   movq.l  &16,%d7             # message bit length
00522: 207c 00c0 0003         mov.l   &RGPIO_DATA+1,%a0   # pointer to low-order data byte
00528: 203c 0000 ffff         mov.l   &0xffff,%d0         # data value for _ENB and _DIR regs
0052e: 3140 fffd              mov.w   %d0,-3(%a0)         # set RGPIO_DIR register
00532: 3140 0001              mov.w   %d0,1(%a0)          # set RGPIO_ENB register

00536: 223c 0001 0000         mov.l   &0x10000,%d1        # d1[17:16] = {clk, cs}
0053c: 2001                   mov.l   %d1,%d0             # copy into temp reg
0053e: e6a8                   lsr.l   %d3,%d0             # align in d0[2:0]
00540: 5880                   addq.l  &4,%d0              # set clk = 1
00542: 1080                   mov.b   %d0,(%a0)           # initialize data
00544: 6002                   bra.b   L%1
                              align   4
                      
                      L%1:
00548: 3202                   mov.w   %d2,%d1             # d1[17:15] = {clk, cs, data}
0054a: 2001                   mov.l   %d1,%d0             # copy into temp reg
0054c: e6a8                   lsr.l   %d3,%d0             # align in d0[2:0]
0054e: 1080                   mov.b   %d0,(%a0)           # transmit data with clk = 0
00550: 5880                   addq.l  &4,%d0              # force clk = 1
00552: e38a                   lsl.l   &1,%d2              # d2[15] = new message data bit
00554: 51fc                   tpf                         # preserve 50% duty cycle
00556: 51fc                   tpf
00558: 51fc                   tpf
0055a: 51fc                   tpf
0055c: 1080                   mov.b   %d0,(%a0)           # transmit data with clk = 1
0055e: 5387                   subq.l  &1,%d7              # decrement loop counter
00560: 66e6                   bne.b   L%1
                      
00562: c0bc 0000 fff5         and.l   &0xfff5,%d0         # negate chip-select
00568: 1080                   mov.b   %d0,(%a0)           # update gpio
                      
0056a: 4cd7 008c              movm.l  (%sp),&0x8c         # restore d2,d3,d7
0056e: 4fef 000c              lea     12(%sp),%sp         # deallocate stack space
00572: 4e75                   rts

Figure 15-9. GPIO SPI Code Example

The resulting SPI performance, as measured in the effective Mbps transmission rate for the 16-bit message, 
is shown in Table 15-12.

The statistics below are applicable to a variety of ColdFire V1 devices, but not to the MMA955xL, which 
has a maximum CPU clock rate of 8 MHz.

Table 15-12. Emulated SPI Performance using GPIO Outputs

Peripheral, Bus-Mapped GPIO RGPIO

SPI Speed at
CPU f = 50 MHz

Relative
Speed

SPI Speed at
CPU f = 50 MHz

Relative
Speed

2.063 Mbps 1.00x 3.809 Mbps 1.29x



MMA955xL Intelligent Motion-Sensing Platform, Rev. 0

Freescale Semiconductor, Inc. 209

Chapter 16  Pin Interrupt Function

16.1 Overview
The IRQ (external interrupt) module provides an interrupt input.

16.2 Features
The IRQ includes these distinctive features:

• IP Bus V2.0 compliant

• External interrupt pin (IRQ)

• IRQ pin can be selected as falling edge and low level or rising edge and high level

• Separate IRQ pin enable

• Software-enabled interrupt

• Programmable, falling-edge interrupt sensitivity – Any of the following:

— Programmable falling edge (or rising edge) only

— Both falling edge and low level

— Both rising edge and high level

• Exit from low-power modes

• Wake-up request to internal module(s) independent of interrupt enable

• Pin-level signal provided to core for BIL/BIH instruction when IRQPE is set

• Software enable/disable of on-chip, pull-up/pull-down done on IRQ pin

16.3 Modes of Operation
The IRQ module is mode-independent and will continue to operate in all user modes. In the low-power 
STOP mode, the IRQ input becomes an asynchronous path.

16.4 Block Diagram
The block diagram of the IRQ module is given in Figure 16-1.
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Figure 16-1. IRQ Block Diagram

16.5 Signal Description
Table 16-1 shows the single, user-accessible signal for the IRQ module.
.

This input pin is used to detect either falling edge, or both falling edge and low level interrupt requests. 
This input pin can also be used to detect either rising edge, or both rising edge and high level interrupt 
requests.

16.6 Memory Map and Registers
This section provides a detailed description of the IRQ register that is accessible to the end user.

16.6.1 Module Memory Map.

Table 16-2 shows the register contained in the IRQ module.

Table 16-1. Signal Properties

Name Function Reset State

IRQ External interrupt pin input

Table 16-2. Module Memory Map

Address Use Access

Base + $0000 Interrupt Status and Control Register (IRQSC) Read/write

IRQACK

IRQIE

D Q

CK

CLR

IRQ
INTERRUPT
REQUEST

VDD

IRQMOD

SYNCHRO-
NIZER

IRQF

TO CPU FOR
BIL/BIH
INSTRUCTIONS

RESET

STOP 
BYPASSSTOP

IPG_CLK

IRQPE
IRQ 0

1

S

IRQEDG

SYNCHRO-
NIZER

IRQPDD

To pull-up/pull-down

TO INTERNAL
MODULES 
WAKE-UP
INPUTS
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16.6.2 Register Descriptions

This section consists of the IRQ register descriptions in address order. 

16.6.2.1 Interrupt Status and Control Register (IRQSC)

Figure 16-2. Interrupt Status and Control Register (IRQSC) 

IRQPDD IRQ Pull Device Disable Bit

The IRQPDD bit is used to disable the on-chip, pull-up/pull-down device on the IRQ pin. This allows users 
to have an external device if required for their application.

1 = On-chip pull-up/pull-down device is disabled

0 = On-chip pull-up/pull-down device is enabled

IRQEDG IRQ Edge Select Bit

The IRQEDG bit selects the falling edge/low level or rising edge/high level function of the IRQ pin.

1 = Rising edge/high level

0 = Falling edge/low level

IRQPE IRQ Pin Enable Bit

The IRQPE bit determines whether the IRQ pin is enabled.

1 = IRQ pin enabled

0 = IRQ pin not enabled

IRQF IRQ Flag Bit

This IRQF bit indicates when an IRQ interrupt is detected.

1 = IRQ interrupt detected

0 = No IRQ interrupt detected

IRQACK IRQ Acknowledge Bit

Writing a logic 1 to the IRQACK bit is part of the flag-clearing mechanism. For more information on 
flag-clearing, see Section 16.7.5. IRQACK always reads as logic 0.

IRQIE IRQ Interrupt Enable Bit

Base + $0000

7 6 5 4 3 2 1 0
R 0

IRQPDD IRQEDG IRQPE
IRQF 0

IRQIE IRQMOD
W IRQACK

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved
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The IRQIE bit determines whether an IRQ interrupt request is enabled.

1 = IRQ interrupt request enabled.

0 = IRQ interrupt requests not enabled.

IRQMOD IRQ Detection Mode Bit

The IRQMOD bit (along with the IRQEDG bit) controls the detection mode of the IRQ pin.

1 = IRQ interrupt requests on falling edge and low level or on rising edge and high levels.

0 = IRQ interrupt requests on falling edge only or on rising edge only.

When pin A4 is programmed as an interrupt, the IRQ function must also be enabled by setting 
IRQSC[IRQPE]. When operated as an interrupt, the pull-up/down enable is controlled by 
IRQSC[IRQPDD] instead of PT1PE[PE4].   At the same time, if IRQSC[IRQPDD] is enabled and 
IRQSC[IRQEDG] is 0, a pull-up is used. If IRQSC[IRQEDG] is 1, a pull-down is used.

16.7 Functional Description
This section provides a complete functional description of the IRQ module.

16.7.1 External Interrupt Pin

Writing to the IRQPE bit in the IRQSC register, enables or disables the IRQ pin.

16.7.2 IRQ Edge Select

The IRQEDG bit in the IRQSC register determines if the IRQ pin is either sensitive to the falling edge and 
low level or the rising edge and high level.

16.7.3 IRQ Sensitivity

The IRQMOD bit in the IRQSC register controls the detection mode of the IRQ module.

• If the IRQ interrupt is falling (or rising) edge sensitive only, a falling (or rising) edge on the enabled 
IRQ pin will set the IRQF bit.

• If the IRQ interrupt is both falling (or rising) edge and low (or high) level sensitive, a falling (or 
rising) edge on the enabled IRQ will set the IRQF bit. The IRQF bit will remain set as long as the 
IRQ pin remains asserted.

16.7.4 IRQ Interrupts

The IRQ module can provide a source of interrupts. To cause a IRQ module interrupt request, the following 
must occur:

• The IRQIE bit in the IRQSC register must be set.

• The IRQF bit in the IRQSC register must become set by a triggered IRQ pin. The IRQF bit 
becomes set by the fifth clock cycle after the IRQ pin has become asserted.
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• The IRQ pin must have been in an inactive state for at least one clock cycle before becoming active.

NOTE
Changing the IRQMOD or IRQEDG bits while IRQPE bit is enabled may 
cause spurious interrupt and set the IRQF bit or cause an interrupt.

16.7.5 Clearing an IRQ Interrupt Request

If the IRQ module interrupt pin is either both falling edge and low level sensitive or rising edge and high 
level sensitive, both of the following actions must occur to clear a IRQ interrupt request:

• Software provides an interrupt-acknowledge by writing a logic 1 to the IRQACK bit in the IRQSC 
register.

• Either of the following happens:

— The IRQ pin returns to a de-asserted logic state.

— The IRQ pin is disabled using the IRQPE bit.

If the IRQ module interrupt pin sensitive only to the falling (or rising) edge. Writing a logic 1 to the 
IRQACK bit in the IRQSC register immediately clears the IRQ interrupt request even if the enabled IRQ 
pin remains asserted.

WARNING
The IRQ flag cannot be cleared as long as the pin is asserted during 
edge-sensitive mode.

16.8 Exit from Low-Power Modes
The IRQ interrupt, if enabled, can provide a means to exit CPU low-power modes (STOPFC, STOPSC and 
STOPNC). If the detection mode sensitivity is set to both falling (or rising) edge and low (or high) level 
and the IRQ pin is enabled and low upon entering STOP, an immediate exit from the Low-Power Mode 
may occur, depending on the specific chip implementation. 

If the detection mode is set to falling (or rising) edge sensitivity only, an edge must be seen on the enabled 
IRQ pin to exit STOP modes.

16.8.1 STOP

Subject to the settings of the SIM peripheral clock enable registers, the IRQ module remains active in 
STOPFC and STOPSC modes. Setting the IRQIE bit in the IRQSC register enables the IRQ interrupt 
request. Any detected IRQ interrupt will bring the CPU out of STOP mode.

16.9 Resets
The IRQ interrupt is disabled after reset. The IRQ module cannot cause a MCU reset.
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16.10 Interrupts
The IRQ module generates a single interrupt.

The IRQ interrupt is listed in Table 16-3 which shows the interrupt name and the name of the local enable 
that can be used to disable a IRQ interrupt request.

Table 16-3. Interrupt Summary

Interrupt Local
Enable Source Description

IRQF IRQIE IRQ input
Software programmable for falling edge only (or rising edge only) or 
both falling edge and low level detection (or both rising edge and high 
level detection).
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Chapter 17  16-Bit Modulo Timer

17.1 Introduction
The MTIM is a simple, 16-bit timer with several software-selectable clock sources and a programmable 
interrupt. This module is incorporated on numerous Freescale ICs. On this device, it is connected as 
follows:

• BUSCLK = IP bus clock

• XCLK = FFCLK from the CLKGEN module. This is nominally 1/8 X Fosc-low.

• TCLK = GROUND

Clock options are limited on the MMA955xL. All clocks are derived from the same oscillator source and, 
for power and noise reasons, it is imperative that clocking during STOP modes be extremely localized. Use 
of XCLK is discouraged for applications that require utmost sensor accuracy. In these cases, FFCLK 
should be disabled by setting OSCTRL[FFSEN] to 0.

Restricting the MTIM to use BUSCLK implies that, for applications that strictly follow the frame structure 
suggested in Section 4.2, “Frame Structure”, MTIM activity is restricted to D.

17.2 Features
Timer system features include:

• 16-bit up-counter

— Free-running or 16-bit modulo limit

— Software-controllable interrupt on overflow

— Counter reset bit (TRST)

— Counter stop bit (TSTP)

• Four software-selectable clock sources for input to the prescaler:

— System-bus clock — Rising edge

— Fixed-frequency clock (XCLK) — Rising edge

— External clock source on the TCLK pin — Rising edge

— External clock source on the TCLK pin — Falling edge

• Nine selectable clock prescale values:

Clock source divide by 1, 2, 4, 8, 16, 32, 64, 128, or 256
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17.2.1 Block Diagram

The block diagram for the modulo timer module is shown Figure 17-1.

Figure 17-1. Modulo Timer Block Diagram

17.2.2 Modes of Operation

This section defines MTIM16 operation in stop and background debug modes.

17.2.2.1 MTIM16 in Stop Modes

All clocked modules, including MTIM16, are inactive in STOPNC.   Operation in other modes is governed 
by the PCESFC, PCESSC and PCERUN registers in the SIM.

17.2.2.2 MTIM16 in Active Background Mode

The MTIM16 stops all counting until the microcontroller returns to normal user operating mode. Counting 
resumes from the suspended value as long as an MTIM16 reset did not occur (TRST written to a 1).

17.3 Register Definition
The MTIM16 includes four registers:

• An 8-bit, status-and-control register

• An 8-bit, clock-configuration register

• A 16-bit, counter register

• A 16-bit modulo register

For the absolute address assignments for all MTIM16 registers, see the direct-page register summary in 
Section17.3. This section refers to registers and control bits only by their names and relative address 
offsets.

Some MCUs may have more than one MTIM16, so register names include placeholder characters to 
identify the specific MTIM16.

BUSCLK

TCLK SYNC

CLOCK 
SOURCE 
SELECT

PRESCALE 
AND SELECT 

DIVIDE BY

16-BIT COUNTER
(MTIMxCNT)

16-BIT MODULO
(MTIMxMOD)

16-BIT COMPARATOR

TRST
TSTP

CLKS PS

XCLK

TOIE

MTIM16
INTERRUPT
REQUEST TOF
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17.3.1 MTIM16 Status and Control Register (MTIMxSC)

MTIMxSC contains the overflow status flag and control bits. These are used to configure the interrupt 
enable, reset the counter and stop the counter. 

17.3.2 MTIM16 Clock Configuration Register (MTIMxCLK)

MTIMxCLK contains the clock select bits (CLKS) and the prescaler select bits (PS).

 7 6 5 4 3 2 1 0

R TOF TOIE 0 TSTP 0 0 0 0

W TRST

Reset 0 0 0 1 0 0 0 0

Figure 17-2. MTIM16 Status and Control Register (MTIMxSC)

Table 17-1. Status and Control Register Bit Descriptions

Field Description

7
TOF

MTIM16 Overflow Flag — This bit is set when the MTIM16 counter register overflows to 0x0000 after reaching the 
value in the MTIM16 modulo register. Clear TOF by reading the MTIMSC register while TOF is set and writing a 0 
to TOF. Writing a 1 has no effect. TOF is also cleared when TRST is written to a 1.
0 MTIM16 counter has not reached the overflow value in the MTIM16 modulo register.
1 MTIM16 counter has reached the overflow value in the MTIM16 modulo register.

6
TOIE

MTIM16 Overflow Interrupt Enable — This read/write bit enables MTIM16 overflow interrupts. If TOIE is set, then 
an interrupt is generated when TOF = 1. Reset clears TOIE. Do not set TOIE if TOF = 1. Clear TOF first, then set 
TOIE.
0 TOF interrupts are disabled. Use software polling. 
1 TOF interrupts are enabled.

5
TRST

MTIM16 Counter Reset — When a 1 is written to this write-only bit, the MTIM16 counter register resets to 0x0000 
and TOF is cleared. Writing a 1 to this bit also makes the modulo value to take effect at once. Reading this bit 
always returns 0.
0 No effect. MTIM16 counter remains in its current state.
1 MTIM16 counter is reset to 0x0000.

4
TSTP

MTIM16 Counter Stop — When set, this read/write bit stops the MTIM16 counter at its current value. Counting 
resumes from the current value when TSTP is cleared. Reset sets TSTP to prevent the MTIM16 from counting.
0 MTIM16 counter is active.
1 MTIM16 counter is stopped.

3:0 Unused register bits. Always read 0.

 7 6 5 4 3 2 1 0

R 0 0
CLKS PS

W

Reset: 0 0 0 0 0 0 0 0

Figure 17-3. MTIM16 Clock Configuration Register (MTIMxCLK)
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17.3.3 MTIM16 Counter Register High/Low (MTIMxCNTH:L)

MTIMxCNTH is the read-only value of the high byte of current MTIM16 16-bit counter.

Table 17-2. Clock Configuration Register Bit Descriptions

Field Description

7-6 Unused register bits. Always read 0.

5-4
CLKS

Clock Source Select — These two read/write bits select one of four different clock sources as the input to the 
MTIM16 prescaler. Changing the clock source while the counter is active does not clear the counter. The count 
continues with the new clock source. Reset clears CLKS to 00.
00 Encoding 0. Bus clock (BUSCLK)
01 Encoding 1. Fixed-frequency clock (XCLK)
10 Encoding 3. Not available
11 Encoding 4. Not available

3-0
PS

Clock Source Prescaler — These four read/write bits select one of nine outputs from the 8-bit prescaler. 
Changing the prescaler value while the counter is active does not clear the counter. The count continues with the 
new prescaler value. Reset clears PS to 0000.
0000 Encoding 0. MTIM16 clock source  1
0001 Encoding 1. MTIM 16clock source  2
0010 Encoding 2. MTIM16 clock source  4
0011 Encoding 3. MTIM16 clock source  8
0100 Encoding 4. MTIM16 clock source  16
0101 Encoding 5. MTIM16 clock source  32
0110 Encoding 6. MTIM16 clock source  64
0111 Encoding 7. MTIM16 clock source  128
1000 Encoding 8. MTIM16 clock source  256
All other encodings default to MTIM16 clock source  256.

 7 6 5 4 3 2 1 0

R CNTH

W

Reset 0 0 0 0 0 0 0 0

Figure 17-4. MTIM16 Counter Register High (MTIMxCNTH)

Table 17-3. Counter Register High Bit Descriptions

Field Description

7-0
CNTH

MTIM16 Count (High Byte)— These eight read-only bits contain the current, high-byte value of the 16-bit counter. 
Writing has no effect to this register. Reset clears the register to 0x00.
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MTIMxCNTL is the read-only value of the low byte of the current MTIM16 16-bit counter.

When either MTIMxCNTH or MTIMxCNTL is read, the content of the two registers is latched into a 
buffer where they remain latched until the other register is read.This allows the coherent 16-bit to be read 
in both big-endian and little-endian compile environments and ensures the 16-bit counter is unaffected by 
the read operation. The coherency mechanism is automatically restarted by an MCU reset or setting of 
TRST bit of MTIMxSC register (whether BDM mode is active or not).

When BDM is active, the coherency mechanism is frozen such that the buffer latches remain in the state 
they were in when the BDM became active, even if one or both halves of the counter register are read while 
BDM is active. This assures that if the user was in the middle of reading a 16-bit register when BDM 
became active, the appropriate value from the other half of the 16-bit value will be read after returning to 
normal execution. The value read from the MTIMxCNTH and MTIMxCNTL registers in BDM mode is 
the value of these registers and not the value of their read buffer.

17.3.4 MTIM16 Modulo Register High/Low (MTIMxMODH/MTIMxMODL)

 7 6 5 4 3 2 1 0

R CNTL

W

Reset 0 0 0 0 0 0 0 0

Figure 17-5. MTIM16 Counter Register Low (MTIMxCNTL)

Table 17-4. Counter Register Low Bit Descriptions

Field Description

7-0
CNTL

MTIM16 Count (Low Byte) — These eight read-only bits contain the current, low-byte value of the 16-bit counter. 
Writing has no effect to this register. Reset clears the register to 0x00.

 7 6 5 4 3 2 1 0

R MODH

W

Reset 0 0 0 0 0 0 0 0

Figure 17-6. MTIM16 Modulo Register High (MTIMxMODH)

Table 17-5. Modulo Register High Bit Descriptions

Field Description

7-0
MODH

MTIM16 Modulo (High Byte) — These eight read/write bits contain the modulo high-byte value used to reset the 
counter and set TOF. Reset sets the register to 0x00.
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A value of 0x0000 in MTIMxMODH:L puts the MTIM16 in free-running mode. Writing to either 
MTIMxMODH or MTIMxMODL latches the value into a buffer and the registers are updated with the 
value of their write buffer after the second byte-writing. The updated MTIMxMODH:L will take effect in 
the next MITIM16 counter cycle except for the first writing of modulo after a chip reset or in BDM mode. 
After a software reset, however, the MTIMxMODH:L takes effect at once, even if it did not take effect 
before the reset. On the first writing of MTIMxMODH:L after chip reset, the counter is reset and the 
modulo takes effect immediately. The latching mechanism may be manually reset by setting the TRST bit 
of MTIMxSC register (whether BDM is active or not).

When BDM is active, the coherency mechanism is frozen such that the buffer latches remain in the state 
they were in when the BDM became active, even if one or both halves of the modulo register are written 
while BDM is active. Any writing to the modulo registers bypasses the buffer latches and writes directly 
to the modulo register while BDM is active. The counter is cleared at the same time.

Reading of MTIMxMODH:L returns the modulo value which is taking effect whenever in normal run 
mode or in BDM mode.

17.4 Functional Description
The MTIM16 is composed of a main, 16-bit up-counter with a 16-bit modulo register, a clock source 
selector and a prescaler block with nine selectable values. The module also contains software-selectable 
interrupt logic.

The MTIM16 counter (MTIMxCNTH:L) has three modes of operation: stopped, free-running and modulo. 
The counter is stopped out of reset. If the counter starts without writing a new value to the modulo 
registers, it will be in free-running mode. The counter is in modulo mode when a value other than 0x0000 
is in the modulo registers.

After an MCU reset, the counter stops and resets to 0x0000. The modulo also is reset to 0x0000. The bus 
clock functions as the default clock source and the prescale value is divided by 1. To start the MTIM16 in 
free-running mode, write to the MTIM16 status and control register (MTIMxSC) and clear the MTIM16 
stop bit (TSTP).

Two clock sources are software selectable: the internal bus clock, the fixed-frequency clock (XCLK). The 
MTIM16 clock-select bits (CLKS1:CLKS0) in MTIMxSC are used to select the desired clock source. If 

 7 6 5 4 3 2 1 0

R MODL

W

Reset 0 0 0 0 0 0 0 0

Figure 17-7. MTIM16 Modulo Register Low (MTIMxMODL)

Table 17-6. Modulo Register Low Bit Descriptions

Field Description

7-0
MODL

MTIM16 Modulo (Low Byte) — These eight read/write bits contain the modulo low-byte value used to reset the 
counter and set TOF. Reset sets the register to 0x00.
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the counter is active (TSTP = 0) when a new clock source is selected, the counter continues counting from 
the previous value using the new clock source.

Nine prescale values are software-selectable: the clock source divided by 1, 2, 4, 8, 16, 32, 64, 128 or 256. 
The prescaler select bits (PS[3:0]) in MTIMxSC select the desired prescale value. If the counter is active 
(TSTP = 0) when a new prescaler value is selected, the counter continues counting from the previous value 
using the new prescaler value.

The MTIM16 modulo register (MTIMxMODH:L) allows the overflow compare value to be set to any 
value from 0x0001 to 0xFFFF. Reset clears the modulo value to 0x0000, which results in a free-running 
counter.

When the counter is active (TSTP = 0), it increases at the selected rate until the count matches the modulo 
value. When these values match, the counter overflows to 0x0000 and continues counting. The MTIM16 
overflow flag (TOF) is set whenever the counter overflows. The flag sets on the transition from the modulo 
value to 0x0000.

Clearing TOF is a two-step process. First, the MTIMxSC register is read and the TOF set. The second step 
writes a 0 to TOF. If another overflow occurs between the first and second steps, the clearing process is 
reset and TOF stays set after the second step is performed. This will prevent the second occurrence from 
being missed. TOF is also cleared when a 1 is written to TRST.

The MTIM16 allows for an optional interrupt to be generated whenever TOF is set. To enable the MTIM16 
overflow interrupt, set the MTIM16 overflow interrupt enable bit (TOIE) in MTIMxSC. TOIE should 
never be written to a 1 while TOF = 1. Instead, TOF should be cleared first, then the TOIE can be set to 1.
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17.4.1 MTIM16 Operation Example

This section shows an example of the MTIM16 operation as the counter reaches a matching value from 
the modulo register.

Figure 17-8. MTIM16 Counter Overflow Example

Figure 17-8, the selected clock source could be any of the two possible choices. The prescaler is set to PS 
= %0010 or divide-by-4. The modulo value in the MTIMxMODH:L register is set to 0x01AA. When the 
counter reaches the modulo value of 0x01AA, it overflows to 0x0000 and continues counting. The timer 
overflow flag, TOF, sets when the counter value changes from 0x01AA to 0x0000. An MTIM16 overflow 
interrupt is generated when TOF is set, if TOIE = 1.

Selected 
clock source

MTIMCNT

MTIM16 clock
(PS=%0010)

MTIMMOD: 0x01AA

0x01A7 0x01A8 0x01A9 0x01AA 0x0000 0x0001

TOF
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Chapter 18  Timer/PWM Module (TPM)
The MMA955xL includes a single, two-channel instance of the standard Freescale timer/PWM module 
(TPM). This module can be used to create delay sequences (useful during flash programming) and measure 
external events (for proximity sensor functions). The module also can generate PWM output signals, 
although that operation can negatively impact sensor accuracy and power consumption.

The TPM has several software-selectable clock sources and three programmable interrupts. This module 
is incorporated on numerous Freescale ICs. On this device, it is connected as follows:

• BUSCLK = IP bus clock

• Fixed System Clock = FFCLK from the CLKGEN module. This is nominally 1/8 X Fosc-low.

• External Clock = Ground

Clock options are limited on the MMA955xL. All clocks are derived from the same oscillator source. For 
power and noise reasons, it is imperative that clocking during STOP modes be extremely localized. Use 
of the fixed system clock is discouraged for applications that require utmost sensor accuracy. In such cases, 
FFCLK should be disabled by setting OSCTRL[FFSEN] to 0.

Restricting the TPM to use BUSCLK implies that, for applications that strictly follow the frame structure 
suggested in Section 4.2, “Frame Structure”, TPM activity is restricted to D.

18.1 Introduction
The TPM is a one-to-eight-channel timer system that supports traditional input capture, output compare, 
or edge-aligned PWM on each channel. A control bit configures the TPM so all channels are used for 
center-aligned PWM functions. Timing functions are based on a 16-bit counter with prescaler and modulo 
features to control the time reference’s frequency and range (period between overflows). This timing 
system is ideally suited for a wide range of control applications and the center-aligned PWM capability 
extends the field of application to motor control in small appliances.

18.1.1 Features

The TPM includes these features:

• One to eight channels, with each channel having:

— Input capture, output compare, or edge-aligned PWM

— A rising-edge, falling-edge or any-edge input-capture trigger

— Set, clear, or toggle output compare action

— Selectable polarity on PWM outputs

— Buffered, center-aligned pulse-width-modulation (CPWM)
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• Timer clock source selectable as bus clock, fixed frequency clock or an external clock

— Prescale taps for divide-by 1, 2, 4, 8, 16, 32, 64 or 128 for any clock input selection

— An additional, fixed-frequency clock input for selecting an on-chip clock source other than the 
bus clock

• 16-bit free-running or modulus count with up/down selection

• One interrupt per channel and one interrupt for TPM counter overflow

18.1.2 Modes of Operation

In general, TPM channels are independently configured to operate in input capture, output compare or 
edge-aligned PWM modes. A control bit allows the whole TPM (all channels) to switch to center-aligned, 
PWM mode. When center-aligned PWM mode is selected, input capture, output compare and edge-aligned 
PWM functions are not available on any channels of the TPM module.

When the MCU is in active BDM background or BDM foreground mode, the TPM temporarily suspends 
all counting until the MCU returns to normal user operating mode. During stop mode, all TPM input clocks 
are stopped, so the TPM is effectively disabled until clocks resume.

18.1.2.1 Input Capture Mode

When a selected edge event occurs on the associated MCU pin, the current value of the 16-bit, timer 
counter is captured into the channel value register and an interrupt flag bit is set. Rising edges, falling 
edges, any edge or no edge (disable channel) are selected as the active edge that triggers the input capture.

18.1.2.2 Output Compare Mode

When the value in the timer-counter register matches the channel value register, an interrupt flag bit is set 
and a selected output action is forced on the associated MCU pin. The output-compare action is selected 
to force the pin to 0, force the pin to 1, toggle the pin or ignore the pin (used for software-timing functions).

18.1.2.3 Edge-Aligned PWM Mode

The period of the PWM output signal is set as the value of the 16-bit, modulo register plus 1. The 
channel-value register sets the duty cycle of the PWM output signal. You can also choose the polarity of 
the PWM output signal.

Interrupts are available at the end of the period and at the duty-cycle transition point. This type of PWM 
signal is called edge-aligned because the leading edges of all PWM signals are aligned with the beginning 
of the period that is same for all channels within a TPM.
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18.1.2.4 Center-Aligned PWM mode

The period of the PWM output is set as twice the value of a 16-bit, modulo register. The channel-value 
register sets the half-duty-cycle duration.

The timer counter counts up until it reaches the modulo value and then counts down until it reaches zero. 
As the count matches the channel value register while counting down, the PWM output becomes active. 
When the count matches the channel-value register while counting up, the PWM output becomes inactive. 
This type of PWM signal is called center-aligned because the centers of the active duty cycle periods for 
all channels are aligned with a count value of zero. This type of PWM is required for types of motors used 
in small appliances.

This is a high-level description only. Detailed descriptions of operating modes are in later sections.
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18.1.3 Block Diagram
The TPM uses one input/output (I/O) pin per channel, TPMxCHn (timer channel n) where n is the channel 
number (1–8). The TPM shares its I/O pins with general-purpose I/O port pins. (For the specific chip 
implementation, see “Pins and Connections.”)

Figure 18-1 shows the TPM structure. The central component of the TPM is the 16-bit counter that can 
operate as a free-running counter or a modulo up/down counter. The TPM counter (when operating in 
normal, up-counting mode) provides the timing reference for the input capture, output compare and 
edge-aligned PWM functions. The timer counter modulo registers (TPMxMODH:TPMxMODL) control 
the modulo value of the counter. (The values 0x0000 or 0xFFFF effectively make the counter 
free-running.) Software can read the counter value at any time without affecting the counting sequence. 
Any write to either half of the TPMxCNT counter resets the counter, regardless of the data value written.

Figure 18-1. TPM Block Diagram
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The TPM channels are programmable independently as input capture, output compare or edge-aligned 
PWM channels. Alternately, the TPM can be configured to produce CPWM outputs on all channels. When 
the TPM is configured for CPWMs (the counter operates as an up/down counter) input capture, output 
compare and EPWM functions are not practical.

18.2 Signal Description
Table 18-1 shows the user-accessible signals for the TPM. The number of channels are varied from one to 
eight. When an external clock is included, it can be shared with the same pin as any TPM channel; 
however, it could be connected to a separate input pin. For the specific chip implementation, see Table 3-1 
on page 24.

18.2.1 Detailed Signal Descriptions

18.2.1.1 TPMxCHn — TPM Channel n I/O Pins

The TPM channel does not control the I/O pin when ELSnB:ELSnA or CLKSB:CLKSA are cleared so it 
normally reverts to general-purpose I/O control. When CPWMS is set and ELSnB:ELSnA are not cleared, 
all TPM channels are configured for center-aligned PWM and the TPMxCHn pins are all controlled by 
TPM. When CPWMS is cleared, the MSnB:MSnA control bits determine whether the channel is 
configured for input capture, output compare or edge-aligned PWM.

When a channel is configured for input capture (CPWMS = 0, MSnB:MSnA = 0:0, and ELSnB:ELSnA 
different from 0:0), the TPMxCHn pin is forced to act as an edge-sensitive input to the TPM. 
ELSnB:ELSnA control bits determine what polarity edge or edges trigger input capture events. The 
channel input signal is synchronized on the bus clock. This implies the minimum pulse width—that can 
be reliably detected—on an input capture pin is four bus clock periods. (With ideal clock pulses as near as 
two bus clocks can be detected.)

When a channel is configured for output compare (CPWMS = 0, MSnB:MSnA = 0:1 and ELSnB:ELSnA 
different from 0:0), the TPMxCHn pin is an output controlled by the TPM. The ELSnB:ELSnA bits 
determine whether the TPMxCHn pin is toggled, cleared or set each time the 16-bit channel value register 
matches the TPM counter.

When the output compare toggle mode is initially selected, the previous value on the pin is driven out until 
the next output compare event. The pin is then toggled.

When a channel is configured for edge-aligned PWM (CPWMS = 0, MSnB = 1 and ELSnB:ELSnA 
different from 0:0), the TPMxCHn pin is an output controlled by the TPM and the ELSnB:ELSnA bits 
control the polarity of the PWM output signal. When ELSnB is set and ELSnA is cleared, the TPMxCHn 
pin is forced high at the start of each new period (TPMxCNT=0x0000). The TPMxCHn pin is forced low 

Table 18-1. Signal Properties

Name Function

TPMxCHn1

1 n = channel number (1–8).

I/O pin associated with TPM channel n.
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when the channel value register matches the TPM counter. When ELSnA is set, the TPMxCHn pin is 
forced low at the start of each new period (TPMxCNT=0x0000). The TPMxCHn pin is forced high when 
the channel value register matches the TPM counter.

Figure 18-2. High-True Pulse of an Edge-Aligned PWM

Figure 18-3. Low-True Pulse of an Edge-Aligned PWM
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When the TPM is configured for center-aligned PWM (CPWMS = 1 and ELSnB:ELSnA different 
from 0:0), the TPMxCHn pins are outputs controlled by the TPM and the ELSnB:ELSnA bits control the 
polarity of the PWM output signal. If ELSnB is set and ELSnA is cleared, the corresponding TPMxCHn 
pin is cleared when the TPM counter is counting up and the channel value register matches the TPM 
counter.

The corresponding TPMxCHn pin is set when the TPM counter is counting down and the channel value 
register matches the TPM counter. If ELSnA is set, the corresponding TPMxCHn pin is set when the TPM 
counter is counting up and the channel value register matches the TPM counter. The corresponding 
TPMxCHn pin is cleared when the TPM counter is counting down and the channel value register matches 
the TPM counter.

Figure 18-4. High-True Pulse of a Center-Aligned PWM

Figure 18-5. Low-True Pulse of a Center-Aligned PWM

18.3 Register Definition

18.3.1 TPM Status and Control Register (TPMxSC)

TPMxSC contains the overflow status flag and control bits used to configure the interrupt enable, TPM 
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module.
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7 6 5 4 3 2 1 0
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W 0

Reset 0 0 0 0 0 0 0 0

Figure 18-6. TPM Status and Control Register (TPMxSC)

Table 18-2. TPMxSC Field Descriptions

Field Description

7
TOF

Timer overflow flag. This read/write flag is set when the TPM counter resets to 0x0000 after reaching the modulo 
value programmed in the TPM counter modulo registers. Clear TOF by reading the TPM status and control 
register when TOF is set and then writing a logic 0 to TOF. If another TPM overflow occurs before the clearing 
sequence is completed, the sequence is reset so TOF remains set after the clear sequence was completed for 
the earlier TOF. This is done so that a TOF interrupt request cannot be lost during the clearing sequence for a 
previous TOF. Reset clears TOF. Writing a logic 1 to TOF has no effect.
0 TPM counter has not reached modulo value or overflow.
1 TPM counter has overflowed.

6
TOIE

Timer overflow interrupt enable. This read/write bit enables TPM overflow interrupts. If TOIE is set, an interrupt is 
generated when TOF equals 1. Reset clears TOIE.
0 TOF interrupts inhibited (use for software polling).
1 TOF interrupts enabled.

5
CPWMS

Center-aligned PWM select. This read/write bit selects CPWM operating mode. By default, the TPM operates in 
up-counting mode for input capture, output compare and edge-aligned PWM functions. Setting CPWMS 
reconfigures the TPM to operate in up/down counting mode for CPWM functions. Reset clears CPWMS.
0 All channels operate as input capture, output compare or edge-aligned PWM mode as selected by the 
MSnB:MSnA control bits in each channel’s status and control register.
1 All channels operate in center-aligned PWM mode.

4–3
CLKS[B:A]

Clock source selection bits. As shown in Table 18-3, this two-bit field is used to disable the TPM counter or select 
one of three clock sources to TPM counter and counter prescaler.

2–0
PS[2:0]

Prescale factor select. This three-bit field selects one of eight division factors for the TPM clock as shown in 
Table 18-4. This prescaler is located after any clock synchronization or clock selection, so it affects the clock 
selected to drive the TPM counter. The new prescale factor affects the selected clock on the next bus clock cycle 
after the new value is updated into the register bits.

Table 18-3. TPM Clock Selection

CLKSB:CLKSA TPM Clock to Prescaler Input

00 No clock selected (TPM counter disable)

01 Bus clock

10 Fixed frequency clock

11 UNAVAILABLE



Timer/PWM Module (TPM)

MMA955xL Intelligent Motion-Sensing Platform, Rev. 0

Freescale Semiconductor, Inc. 231

18.3.2 TPM-Counter Registers (TPMxCNTH:TPMxCNTL)

The two read-only TPM counter registers contain the high and low bytes of the value in the TPM counter. 
Reading either byte (TPMxCNTH or TPMxCNTL) latches the contents of both bytes into a buffer where 
they remain latched until the other half is read. This allows coherent, 16-bit reads in big-endian or 
little-endian order which makes reads more friendly to various compiler implementations. The coherency 
mechanism is automatically restarted by an MCU reset or any write to the timer status/control register 
(TPMxSC).

Reset clears the TPM counter registers. Writing any value to TPMxCNTH or TPMxCNTL also clears the 
TPM counter (TPMxCNTH:TPMxCNTL) and resets the coherency mechanism, regardless of the data 
involved in the write.

When BDM is active, the timer counter is frozen. (This is the value you read.) The coherency mechanism 
is frozen so that the buffer latches remain in the state they were in when the BDM became active, even if 
one or both counter halves are read while BDM is active. This assures that if you were in the middle of 
reading a 16-bit register when BDM became active, it reads the appropriate value from the other half of 
the 16-bit value after returning to normal execution.

Table 18-4. Prescale Factor Selection

PS[2:0] TPM Clock Divided-By

000 1

001 2

010 4

011 8

100 16

101 32

110 64

111 128

7 6 5 4 3 2 1 0

R TPMxCNT[15:8]

W Any write to TPMxCNTH clears the 16-bit counter

Reset 0 0 0 0 0 0 0 0

Figure 18-7. TPM Counter Register High (TPMxCNTH)

7 6 5 4 3 2 1 0

R TPMxCNT[7:0]

W Any write to TPMxCNTL clears the 16-bit counter

Reset 0 0 0 0 0 0 0 0

Figure 18-8. TPM Counter Register Low (TPMxCNTL)
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In BDM mode, writing any value to TPMxSC, TPMxCNTH, or TPMxCNTL registers resets the read 
coherency mechanism of the TPMxCNTH:TPMxCNTL registers, regardless of the data involved in the 
write.

18.3.3 TPM Counter Modulo Registers (TPMxMODH:TPMxMODL)

The read/write TPM modulo registers contain the modulo value for the TPM counter. After the TPM 
counter reaches the modulo value, the TPM counter resumes counting from 0x0000 at the next clock and 
the overflow flag (TOF) becomes set.

Writing to TPMxMODH or TPMxMODL inhibits the TOF bit and overflow interrupts until the other byte 
is written. Reset sets the TPM counter modulo registers to 0x0000 which results in a free-running timer 
counter (modulo disabled).

Writes to any of the registers TPMxMODH and TPMxMODL actually write to buffer registers and the 
registers are updated with the value of their write buffer according to the value of CLKSB:CLKSA bits:

• If CLKSB and CLKSA are cleared, the registers are updated when the second byte is written.

• If CLKSB and CLKSA are not cleared, the registers are updated after both bytes were written and 
the TPM counter changes from (TPMxMODH:TPMxMODL – 1) to 
(TPMxMODH:TPMxMODL). If the TPM counter is a free-running counter, the update is made 
when the TPM counter changes from 0xFFFE to 0xFFFF.

The latching mechanism is manually reset by writing to the TPMxSC address (whether BDM is active or 
not).

When BDM is active, the coherency mechanism is frozen (unless reset by writing to TPMxSC register) so 
the buffer latches remain in the state they were in when the BDM became active, even if one or both halves 
of the modulo register are written while BDM is active. Any write to the modulo registers bypasses the 
buffer latches and directly writes to the modulo register while BDM is active.

To avoid confusion about when the first counter overflow occurs, reset the TPM counter before writing to 
the TPM modulo registers.

7 6 5 4 3 2 1 0

R TPMxMOD[15:8]

W

Reset 0 0 0 0 0 0 0 0

Figure 18-9. TPM Counter Modulo Register High (TPMxMODH)

7 6 5 4 3 2 1 0

R TPMxMOD[7:0]

W

Reset 0 0 0 0 0 0 0 0

Figure 18-10. TPM Counter Modulo Register Low (TPMxMODL)
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18.3.4 TPM Channel n Status and Control Register (TPMxCnSC)

TPMxCnSC contains the channel-interrupt-status flag and control bits that configure the interrupt enable, 
channel configuration and pin function.

7 6 5 4 3 2 1 0

R CHnF CHnIE MSnB MSnA ELSnB ELSnA 0 0

W 0

Reset 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 18-11. TPM Channel n Status and Control Register (TPMxCnSC)

Table 18-5. TPMxCnSC Field Descriptions

Field Description

7
CHnF

Channel n flag. When channel n is an input capture channel, this read/write bit is set when an active edge occurs 
on the channel n input. When channel n is an output compare or edge-aligned/center-aligned PWM channel, 
CHnF is set when the value in the TPM counter registers matches the value in the TPM channel n value registers. 
When channel n is an edge-aligned/center-aligned PWM channel and the duty cycle is set to 0 percent or 
100 percent, CHnF is not set even when the value in the TPM counter registers matches the value in the TPM 
channel n value registers.
A corresponding interrupt is requested when this bit is set and channel n interrupt is enabled (CHnIE = 1). Clear 
CHnF by reading TPMxCnSC while this bit is set and then writing a logic 0 to it. If another interrupt request occurs 
before the clearing sequence is completed, CHnF remains set. This is done so a CHnF interrupt request is not 
lost due to clearing a previous CHnF.
Reset clears this bit. Writing a logic 1 to CHnF has no effect.
0 No input capture or output compare event occurred on channel n.
1 Input capture or output-compare event on channel n.

6
CHnIE

Channel n interrupt enable. This read/write bit enables interrupts from channel n. Reset clears this bit.
0 Channel n interrupt requests disabled (Use this for software polling.)
1 Channel n interrupt requests enabled.

5
MSnB

Mode select B for TPM channel n. When CPWMS is cleared, setting the MSnB bit configures TPM channel n for 
edge-aligned PWM mode. Refer to the summary of channel mode and setup controls in Table 18-6.

4
MSnA

Mode select A for TPM channel n. When CPWMS and MSnB are cleared, the MSnA bit configures TPM channel 
n for input capture mode or output compare mode. Refer to Table 18-6 for a summary of channel mode and setup 
controls.
Note: If the associated port pin is not stable for at least two bus clock cycles before changing to input capture 

mode, it is possible to get an unexpected indication of an edge trigger.

3–2
ELSnB
ELSnA

Edge/level select bits. Depending upon the operating mode for the timer channel as set by CPWMS:MSnB:MSnA 
and shown in Table 18-6, these bits select the polarity of the input edge that triggers an input capture event, select 
the level that is driven in response to an output compare match or select the polarity of the PWM output.
If ELSnB and ELSnA bits are cleared, the channel pin is not controlled by TPM. This configuration can be used 
by software compare only because it does not require the use of a pin for the channel.
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18.3.5 TPM Channel Value Registers (TPMxCnVH:TPMxCnVL)

These read/write registers contain the captured TPM counter value of the input-capture function or the 
output compare value for the output-compare or PWM functions. The channel registers are cleared by 
reset.

In input-capture mode, reading either byte (TPMxCnVH or TPMxCnVL) latches the contents of both 
bytes into a buffer where they remain latched until the other half is read. This latching mechanism also 
resets (becomes unlatched) when the TPMxCnSC register is written (whether BDM mode is active or not). 
Any write to the channel registers is ignored during the input-capture mode.

Table 18-6.  Mode, Edge, and Level Selection

CPWMS MSnB:MSnA ELSnB:ELSnA Mode Configuration

X XX 00 Pin is not controlled by TPM. It is reverted to general-purpose I/O or 
other peripheral control

0 00 01 Input capture Capture on rising edge only

10 Capture on falling edge only

11 Capture on rising or falling edge

01 00 Output compare Software-compare only

01 Toggle output on channel match

10 Clear output on channel match

11 Set output on channel match

1X 10 Edge-aligned 
PWM

High-true pulses (clear output on channel match)

X1 Low-true pulses (set output on channel match)

1 XX 10 Center-aligned 
PWM

High-true pulses (clear output on channel match 
when TPM counter is counting up)

X1 Low-true pulses (set output on channel match when 
TPM counter is counting up)

7 6 5 4 3 2 1 0

R TPMxCnV[15:8]

W

Reset 0 0 0 0 0 0 0 0

Figure 18-12. TPM Channel Value Register High (TPMxCnVH)

7 6 5 4 3 2 1 0

R TPMxCnV[7:0]

W

Reset 0 0 0 0 0 0 0 0

Figure 18-13. TPM Channel Value Register Low (TPMxCnVL)
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When BDM is active, the coherency mechanism is frozen (unless reset by writing to TPMxCnSC register) 
so the buffer latches remain in the state they were in when the BDM became active, even if one or both 
halves of the channel register are read while BDM is active. This assures that if you were in the middle of 
reading a 16-bit register when BDM became active, it reads the appropriate value from the other half of 
the 16-bit value after returning to normal execution. The value read from the TPMxCnVH and 
TPMxCnVL registers in BDM mode is the value of these registers and not the value of their read buffer.

In output compare or PWM modes, writing to either byte (TPMxCnVH or TPMxCnVL) latches the value 
into a buffer. After both bytes were written, they are transferred as a coherent, 16-bit value into the 
timer-channel registers according to the value of CLKSB:CLKSA bits and the selected mode:

• If CLKSB and CLKSA are cleared, the registers are updated when the second byte is written.

• If CLKSB and CLKSA are not cleared and in output-compare mode, the registers are updated after 
the second byte is written and on the next change of the TPM counter (end of the prescaler 
counting).

• If CLKSB and CLKSA are not cleared and in the EPWM or CPWM mode, the registers are updated 
after both bytes were written and the TPM counter changes from (TPMxMODH:TPMxMODL – 1) 
to (TPMxMODH:TPMxMODL). If the TPM counter is a free-running counter, the update is made 
when the TPM counter changes from 0xFFFE to 0xFFFF.

The latching mechanism is manually reset by writing to the TPMxCnSC register (whether BDM mode is 
active or not). This latching mechanism allows coherent, 16-bit writes in either big-endian or little-endian 
order that is friendly to various compiler implementations.

When BDM is active, the coherency mechanism is frozen so that the buffer latches remain in the state they 
were in when the BDM became active, even if one or both halves of the channel register are written while 
BDM is active. Any write to the channel registers bypasses the buffer latches and writes directly to the 
channel register while BDM is active. The values written to the channel register while BDM is active are 
used for PWM and output-compare operation after normal execution resumes. Writes to the channel 
registers while BDM is active do not interfere with partial completion of a coherency sequence. After the 
coherency mechanism is fully exercised, the channel registers are updated using the buffered values (while 
BDM was not active).

18.4 Functional Description
All TPM functions are associated with a central, 16-bit counter that allows flexible selection of the clock 
and prescale factor. There is also a 16-bit, modulo register associated with this counter.

The CPWMS control bit chooses between center-aligned PWM operation for all channels in the TPM 
(CPWMS = 1) or general-purpose timing functions (CPWMS = 0) where each channel can independently 
be configured to operate in input capture, output compare or edge-aligned PWM mode. The CPWMS 
control bit is located in the TPM status and control register because it affects all channels within the TPM 
and influences the way the main counter operates. (In CPWM mode, the counter changes to an up/down 
mode rather than the up-counting mode used for general-purpose timer functions.)

The following sections describe TPM counter and each of the timer operating modes (input capture, output 
compare, edge-aligned PWM and center-aligned PWM). Because details of pin operation and interrupt 
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activity depend upon the operating mode, these topics are covered in the associated mode explanation 
sections.

18.4.1 Counter

All timer functions are based on the main, 16-bit counter (TPMxCNTH:TPMxCNTL). This section 
discusses selection of the clock, end-of-count overflow, up-counting versus up/down counting and manual 
counter reset.

18.4.1.1 Counter Clock Source

The two-bit field CLKSB:CLKSA, in the timer status and control register (TPMxSC), disables the TPM 
counter or selects one of three clock sources to TPM counter (Table 18-3). After any MCU reset, CLKSB 
and CLKSA are cleared so no clock is selected and the TPM counter is disabled (when the TPM is in a 
very-low-power state).

You can read or write these control bits at any time. Disabling the TPM counter by writing 00 to 
CLKSB:CLKSA bits does not affect the values in the TPM counter or other registers.

The fixed-frequency clock is an alternative clock source for the TPM counter that allows the selection of 
a clock other than the bus clock or external clock. This clock input is defined by chip integration. For 
further information, see Chapter 12, “On-Chip Oscillator (CLKGEN)”. Due to TPM hardware 
implementation limitations, the frequency of the fixed-frequency clock must not exceed the bus clock 
frequency. The fixed-frequency clock has no limitations for low frequency operation.

18.4.1.2 Counter Overflow and Modulo Reset

An interrupt flag and enable are associated with the 16-bit, main counter. The flag (TOF) is a 
software-accessible indication that the timer counter has overflowed. The enable signal selects between 
software polling (TOIE = 0)—where no interrupt is generated—or interrupt-driven operation 
(TOIE = 1)—where the interrupt is generated whenever the TOF is set.

The conditions causing TOF to become set depend on whether the TPM is configured for center-aligned 
PWM (CPWMS = 1). If CPWMS is cleared and there is no modulus limit, the 16-bit timer counter counts 
from 0x0000 through 0xFFFF and overflows to 0x0000 on the next counting clock. TOF is set at the 
transition from 0xFFFF to 0x0000. When a modulus limit is set, TOF is set at the transition from the value 
set in the modulus register to 0x0000.

When the TPM is in center-aligned PWM mode (CPWMS = 1), the TOF flag is set as the counter changes 
direction at the end of the count value set in the modulus register (at the transition from the value set in the 
modulus register to the next-lower count value). This corresponds to the end of a PWM period. (The 
0x0000 count value corresponds to the center of a period.)

18.4.1.3 Counting Modes

The main timer counter has two counting modes. When center-aligned PWM is selected (CPWMS = 1), 
the counter operates in up/down counting mode. Otherwise, the counter operates as a simple up-counter. 
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As an up counter, the timer counter counts from 0x0000 through its terminal count and continues with 
0x0000. The terminal count is 0xFFFF or a modulus value in TPMxMODH:TPMxMODL.

When center-aligned PWM operation is specified, the counter counts up from 0x0000 through its terminal 
count and then down to 0x0000 where it changes back to up-counting. The terminal count value and 
0x0000 are normal length counts (one timer clock period long). In this mode, the Timer Overflow Flag 
(TOF) is set at the end of the terminal-count period (as the count changes to the next-lower count value).

18.4.1.4 Manual Counter Reset

The main timer counter can be manually reset at any time by writing any value to TPMxCNTH or 
TPMxCNTL. Resetting the counter in this manner also resets the coherency mechanism in case only half 
of the counter was read before resetting the count.

18.4.2 Channel Mode Selection

If CPWMS is cleared, the MSnB and MSnA bits determine the basic mode of operation for the 
corresponding channel. Choices include input capture, output compare and edge-aligned PWM.

18.4.2.1 Input Capture Mode

With the input capture function, the TPM can capture the time at which an external event occurs. When an 
active edge occurs on the pin of an input-capture channel, the TPM latches the contents of the TPM counter 
into the channel-value registers (TPMxCnVH:TPMxCnVL). Rising edges, falling edges or any edge is 
chosen as the active edge that triggers an input capture.

In input capture mode, the TPMxCnVH and TPMxCnVL registers are read-only.

When either half of the 16-bit capture register is read, the other half is latched into a buffer to support 
coherent, 16-bit accesses in big-endian or little-endian order. The coherency sequence can be manually 
reset by writing to TPMxCnSC.

An input capture event sets a flag bit (CHnF) that optionally generates a CPU interrupt request.

While in BDM, the input-capture function works as configured. When an external event occurs, the TPM 
latches the contents of the TPM counter (frozen because of the BDM mode) into the channel-value 
registers and sets the flag bit.

18.4.2.2 Output Compare Mode

With the output-compare function, the TPM can generate timed pulses with programmable position, 
polarity, duration and frequency. When the counter reaches the value in the TPMxCnVH:TPMxCnVL 
registers of an output-compare channel, the TPM can set, clear or toggle the channel pin.

Writes to any of TPMxCnVH and TPMxCnVL registers actually write to buffer registers. In 
output-compare mode, the TPMxCnVH:TPMxCnVL registers are updated with the value of their write 
buffer only after both bytes were written and according to the value of CLKSB:CLKSA bits:

• If CLKSB and CLKSA are cleared, the registers are updated when the second byte is written.
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• If CLKSB and CLKSA are not cleared, the registers are updated at the next change of the TPM 
counter (the end of the prescaler counting), after the second byte is written.

The coherency sequence can be manually reset by writing to the channel status/control register 
(TPMxCnSC).

An output compare event sets a flag bit (CHnF) that optionally generates a CPU interrupt request.

18.4.2.3 Edge-Aligned PWM Mode

This type of PWM output uses the normal up-counting mode of the timer counter (CPWMS = 0) and can 
be used when other channels in the same TPM are configured for input-capture or output-compare 
functions. The period of this PWM signal is determined by the value of the modulus register 
(TPMxMODH:TPMxMODL) plus 1. The duty cycle is determined by the value of the timer-channel 
register (TPMxCnVH:TPMxCnVL). The polarity of this PWM signal is determined by ELSnA bit. 
Zero-percent and 100-percent duty-cycle cases are possible.

The time between the modulus overflow and the channel match value (TPMxCnVH:TPMxCnVL) is the 
pulse width or duty cycle (Figure 18-14). If ELSnA is cleared, the counter overflow forces the PWM signal 
high and the channel match forces the PWM signal low. If ELSnA is set, the counter overflow forces the 
PWM signal low and the channel-match forces the PWM signal high.

Figure 18-14. EPWM Period and Pulse Width (ELSnA = 0)

When the channel-value register is set to 0x0000, the duty cycle is 0 percent. A 100-percent duty cycle is 
achieved by setting the timer-channel register (TPMxCnVH:TPMxCnVL) to a value greater than the 
modulus setting. This implies that the modulus setting must be less than 0xFFFF in order to get a 
100-percent duty cycle.

The timer-channel registers are buffered to ensure coherent, 16-bit updates and to avoid unexpected PWM 
pulse widths. Writes to any of the registers TPMxCnVH and TPMxCnVL actually write to buffer registers. 
In edge-aligned PWM mode, the TPMxCnVH:TPMxCnVL registers are updated with the value of their 
write buffer according to the value of CLKSB:CLKSA bits:

• If CLKSB and CLKSA are cleared, the registers are updated when the second byte is written.

• If CLKSB and CLKSA are not cleared, the registers are updated after both bytes were written and 
the TPM counter changes from (TPMxMODH:TPMxMODL – 1) to 
(TPMxMODH:TPMxMODL). If the TPM counter is a free-running counter, the update is made 
when the TPM counter changes from 0xFFFE to 0xFFFF.
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Channel
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18.4.2.4 Center-Aligned PWM Mode

This type of PWM output uses the up/down counting mode of the timer counter (CPWMS = 1). The 
channel-match value in TPMxCnVH:TPMxCnVL determines the pulse width (duty cycle) of the PWM 
signal while the period is determined by the value in TPMxMODH:TPMxMODL.

TPMxMODH:TPMxMODL must be kept in the range of 0x0001 to 0x7FFF because values outside this 
range can produce ambiguous results. ELSnA determines the polarity of the CPWM signal.

pulse width = 2 x (TPMxCnVH:TPMxCnVL)

period = 2 x (TPMxMODH:TPMxMODL); TPMxMODH:TPMxMODL = 0x0001–0x7FFF

If TPMxCnVH:TPMxCnVL is zero or negative (Bit 15 is set), the duty cycle is 0 percent. If 
TPMxCnVH:TPMxCnVL is a positive value (Bit 15 clear) and greater than the non-zero modulus setting, 
the duty cycle is 100 percent because the channel-match never occurs. This implies the usable range of 
periods set by the modulus register is 0x0001 through 0x7FFE (or 0x7FFF, if you do not need to generate 
a 100-percent duty cycle).

This is not a significant limitation. The resulting period is much longer than required for normal 
applications.

All 0s in TPMxMODH:TPMxMODL is a special case that must not be used with center-aligned PWM 
mode. When CPWMS is cleared, this case corresponds to the counter running free from 0x0000 through 
0xFFFF. When CPWMS is set, the counter needs a valid match to the modulus register somewhere other 
than at 0x0000 in order to change directions from up-counting to down-counting.

The channel-match value in the TPM channel registers (times two) determines the pulse width (duty cycle) 
of the CPWM signal (Figure 18-15). If ELSnA is cleared, a channel match occurring while counting up 
clears the CPWM output signal and a channel match occurring while counting down sets the output. The 
counter counts up until it reaches the modulo setting in TPMxMODH:TPMxMODL, then counts down 
until it reaches zero. This sets the period equal to two times TPMxMODH:TPMxMODL.

Figure 18-15.  CPWM Period and Pulse Width (ELSnA = 0)

Center-aligned PWM outputs typically produce less noise than edge-aligned PWMs because fewer I/O pin 
transitions are lined up at the same system clock edge. This type of PWM is required for some types of 
motor drives.
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Input capture, output compare and edge-aligned PWM functions do not make sense when the counter is 
operating in up/down-counting mode, so this implies that all active channels within a TPM must be used 
in CPWM mode when CPWMS is set.

The timer-channel registers are buffered to ensure coherent, 16-bit updates and avoid unexpected PWM 
pulse widths. Writes to any of the registers TPMxCnVH and TPMxCnVL actually write to buffer registers. 
In center-aligned PWM mode, the TPMxCnVH:TPMxCnVL registers are updated with the value of their 
write buffer according to the value of CLKSB:CLKSA bits:

• If CLKSB and CLKSA are cleared, the registers are updated when the second byte is written.

• If CLKSB and CLKSA are not cleared, the registers are updated after both bytes were written and 
the TPM counter changes from (TPMxMODH:TPMxMODL – 1) to 
(TPMxMODH:TPMxMODL). If the TPM counter is a free-running counter, the update is made 
when the TPM counter changes from 0xFFFE to 0xFFFF.

When TPMxCNTH:TPMxCNTL equals TPMxMODH:TPMxMODL, the TPM can optionally generate a 
TOF interrupt (at the end of this count).

18.5 Reset Overview

18.5.1 General

The TPM is reset whenever any MCU reset occurs.

18.5.2 Description of Reset Operation

Reset clears TPMxSC that disables TPM counter clock and overflow interrupt (TOIE=0). CPWMS, 
MSnB, MSnA, ELSnB and ELSnA are all cleared. This configures all TPM channels for input capture 
operation and the associated pins are not controlled by TPM.

18.6 Interrupts

18.6.1 General

The TPM generates an optional interrupt for the main counter overflow and an interrupt for each channel. 
The meaning of channel interrupts depends on each channel’s mode of operation. If the channel is 
configured for input capture, the interrupt flag is set each time the selected input capture edge is 
recognized. If the channel is configured for output compare or PWM modes, the interrupt flag is set each 
time the main timer counter matches the value in the 16-bit, channel-value register.

All TPM interrupts are listed in Table 18-7.
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The TPM module provides high-true interrupt signals.

18.6.2 Description of Interrupt Operation

For each interrupt source in the TPM, a flag bit is set upon recognition of the interrupt condition such as 
timer overflow, channel input-capture or output-compare events. This flag is read (polled) by software to 
determine that the action has occurred or an associated enable bit (TOIE or CHnIE) can be set to enable 
the interrupt generation. While the interrupt-enable bit is set, the interrupt is generated whenever the 
associated interrupt flag is set. Software must perform a sequence of steps to clear the interrupt flag before 
returning from the interrupt-service routine.

TPM interrupt flags are cleared by a two-step process including a read of the flag bit, while it is set, 
followed by a write of 0 to the bit. If a new event is detected between these two steps, the sequence is reset 
and the interrupt flag remains set after the second step to avoid the possibility of missing the new event.

18.6.2.1 Timer Overflow Interrupt (TOF) Description

The meaning and details of operation for TOF interrupts varies slightly, depending on the mode of 
operation of the TPM system (general-purpose timing functions or center-aligned PWM operation). The 
flag is cleared by the two-step sequence described above.

18.6.2.1.1 Normal Case

When CPWMS is cleared, TOF is set when the timer counter changes from the terminal count (the value 
in the modulo register) to 0x0000. If the TPM counter is a free-running counter, the update is made when 
the TPM counter changes from 0xFFFF to 0x0000.

18.6.2.1.2 Center-Aligned PWM Case

When CPWMS is set, TOF is set when the timer counter changes direction from up-counting to 
down-counting at the end of the terminal count (the value in the modulo register).

18.6.2.2 Channel Event Interrupt Description

The meaning of channel interrupts depends on the channel’s current mode (input capture, output compare, 
edge-aligned PWM or center-aligned PWM).

Table 18-7. Interrupt Summary

Interrupt Local Enable Source Description

TOF TOIE Counter Overflow Set each time the TPM counter reaches its terminal count (at transition 
to its next count value)

CHnF CHnIE Channel Event An input capture event or channel match took place on channel n
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18.6.2.2.1 Input Capture Events

When a channel is configured as an input-capture channel, the ELSnB:ELSnA bits select if the channel 
pin is not controlled by TPM, rising edges, falling edges or any edge as the edge that triggers an 
input-capture event. When the selected edge is detected, the interrupt flag is set.

The flag is cleared by the two-step sequence described in Section 18.6.2, “Description of Interrupt 
Operation”.

18.6.2.2.2 Output Compare Events

When a channel is configured as an output-compare channel, the interrupt flag is set each time the main 
timer counter matches the 16-bit value in the channel-value register. The flag is cleared by the two-step 
sequence described in Section 18.6.2, “Description of Interrupt Operation”.

18.6.2.2.3 PWM End-of-Duty-Cycle Events

When the channel is configured for edge-aligned PWM, the channel flag is set when the timer counter 
matches the channel-value register that marks the end of the active, duty-cycle period.

When the channel is configured for center-aligned PWM, the timer count matches the channel-value 
register twice during each PWM cycle. In this CPWM case, the channel flag is set at the start and end of 
the active, duty-cycle period when the timer counter matches the channel value register.

The flag is cleared by the two-step sequence described in Section 18.6.2, “Description of Interrupt 
Operation”.
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Chapter 19  Interrupt Controller (CF1_INTC)

19.1 Introduction
The interrupt controller is intended for use in low-cost micro controller designs using the Version 1 (V1) 
ColdFire processor core. In keeping with the general philosophy for devices based on this low-end 32-bit 
processor, the interrupt controller generally supports less programmability compared to similar modules 
in other ColdFire microcontrollers and embedded microprocessors, yet provides the required functionality 
with a minimal silicon cost.

These requirements guide the CF1_INTC module definition to support Freescale’s Controller Continuum:

• The priorities of the interrupt requests between comparable HCS08 and V1 ColdFire devices are 
identical.

• Supports a mode of operation (via software convention with hardware assists) equivalent to the 
S08’s interrupt processing with only one level of nesting.

• Leverages the current ColdFire interrupt controller programming model and functionality, but with 
a minimal hardware implementation and cost.

Table 19-1 provides a high-level architectural comparison between HCS08 and ColdFire exception 
processing as these differences are important in the definition of the CF1_INTC module. Throughout this 
document, the term IRQ refers to an interrupt request, and ISR refers to an interrupt service routine to 
process an interrupt exception.

Table 19-1. Exception Processing Comparison

Attribute HCS08 V1 ColdFire

Exception Vector Table 32 two-byte entries, fixed location at upper 
end of memory

103 four-byte entries, located at lower end of 
memory at reset, relocatable with the VBR

More on Vectors 2 for CPU + 30 for IRQs, reset at upper 
address

64 for CPU + 39 for IRQs, reset at lowest address

Exception Stack Frame 5-byte frame: CCR, A, X, PC 8-byte frame: F/V, SR, PC; General-purpose 
registers (An, Dn) must be saved/restored by the 
ISR

Interrupt Levels 1 = f(CCR[I]) 7 = f (SR[I]) with automatic hardware support for 
nesting

Non-Maskable IRQ Support No Yes, with level 7 interrupts

Core-enforced IRQ Sensitivity No Level 7 is edge sensitive, else level sensitive

INTC Vectoring Fixed priorities and vector assignments Fixed priorities and vector assignments, plus any 
two IRQs can be remapped as the highest priority 
level 6 requests
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19.1.1 Overview

Interrupt exception processing includes interrupt recognition, aborting the current instruction execution 
stream, storing of an 8-byte exception stack frame in memory, calculation of the appropriate vector, and 
passing control to the specified interrupt service routine.

Unless specifically noted otherwise, all ColdFire processors sample for interrupts once during each 
instruction’s execution during the first cycle of execution in the OEP. Additionally, all ColdFire processors 
use an instruction restart exception model.

The ColdFire processor architecture defines a 3-bit interrupt priority mask field in the processor’s status 
register (SR[I]). This field, and the associated hardware, support seven levels of interrupt requests with the 
processor providing automatic nesting capabilities. The levels are defined in descending numeric order 
with 7 > 6 ... > 1. Level 7 interrupts are treated as non-maskable, edge-sensitive requests while levels 6–1 
are maskable, level-sensitive requests. The SR[I] field defines the processor’s current interrupt level. The 
processor continuously compares the encoded IRQ level from CF1_INTC against SR[I]. Recall that 
interrupt requests are inhibited for all levels less than or equal to the current level, except the edge-sensitive 
level 7 request, which cannot be masked.

Exception processing for ColdFire processors is streamlined for performance and includes all actions from 
the detection of the fault condition to the initiation of fetch for the first handler instruction. Exception 
processing is comprised of four major steps.

1. The processor makes an internal copy of the status register (SR) and enters supervisor mode by 
setting SR[S] and disabling trace mode by clearing SR[T]. Occurrence of an interrupt exception 
also forces the master mode (M) bit to be cleared and the interrupt priority mask (I) to be set to the 
level of the current interrupt request.

2. The processor determines the exception vector number. For all faults except interrupts, the 
processor performs this calculation based on the exception type. For interrupts, the processor 
performs an IACK bus cycle to obtain the vector number from the interrupt controller if 
CPUCR[IAE] equals 1. The IACK cycle is mapped to special locations within the interrupt 
controller’s IPS address space with the interrupt level encoded in the address. If 
CPUCR[IAE] equals 0, the processor uses the vector number supplied by the interrupt controller 
at the time the request was signaled (for improved performance).

3. The processor saves the current context by creating an exception stack frame on the system stack. 
As a result, exception stack frame is created at a 0-modulo-4 address on top of the system stack 
defined by the supervisor stack pointer (SSP). The processor uses an 8-byte stack frame for all 
exceptions. It contains the vector number of the exception, the contents of the status register at the 
time of the exception, and the program counter (PC) at the time of the exception. The exception 

Software IACK No Yes

Exit Instruction from ISR RTI RTE

Table 19-1. Exception Processing Comparison (continued)

Attribute HCS08 V1 ColdFire
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type determines whether the program counter placed in the exception stack frame defines the 
location of the faulting instruction (fault) or the address of the next instruction to be executed 
(next). For interrupts, the stacked PC is always the address of the next instruction to be executed.

4. The processor calculates the address of the first instruction of the exception handler. By definition, 
the exception vector table is aligned on a 1-Mbyte boundary. This instruction address is generated 
by fetching a 32-bit exception vector from the table located at the address defined in the vector base 
register (VBR). The index into the exception table is calculated as (4  vector number). After the 
exception vector has been fetched, the contents of the vector serves as a 32-bit pointer to the 
address of the first instruction of the desired handler. After the instruction fetch for the first opcode 
of the handler has been initiated, exception processing terminates and normal instruction 
processing continues in the handler.

All ColdFire processors support a 1024-byte vector table aligned on any 1-Mbyte address boundary. For 
the V1 ColdFire core, the only practical locations for the vector table are based at 0x(00)00_0000 in the 
flash, 0x(00)30_0000 in ROM, or 0x(00)80_0000 in the RAM. The table contains 256 exception vectors; 
the first 64 are reserved for internal processor exceptions, and the remaining 192 are user-defined interrupt 
vectors. For the V1 ColdFire core, the table is partially populated with the first 64 reserved for internal 
processor exceptions, while vectors 64 and above are reserved for the peripheral I/O requests and the seven 
software interrupts. The IRQ assignments are device-specific as they depend on the exact set of peripherals 
for any given device.

A simplified V1 ColdFire exception vector table is shown in Table 19-2. This is a generic table for 
illustration purposes only. It is NOT necessarily the exception table for this device. See the memory 
map chapter of the device specification for that detail.

Table 19-2. Sample V1 ColdFire Exception Vector Table

Vector
Number(s)

Vector
Offset (Hex)

Stacked Program
Counter

Assignment

0 0x000 — Initial supervisor stack pointer

1 0x004 — Initial program counter
2–63 0x008–0x0FC — Reserved for internal CPU exceptions.

64 0x100 Next IRQ_pin

65 0x104 Next Low_voltage
66 0x108 Next TPM1_ch0

67 0x10C Next TPM1_ch1

68 0x110 Next TPM1_ch2
69 0x114 Next TPM1_ovfl

70 0x118 Next TPM2_ch0

71 0x11C Next TPM2_ch1
72 0x120 Next TPM2_ch2

73 0x124 Next TPM2_ovfl

74 0x128 Next SPI2
75 0x12C Next SPI1

76 0x130 Next SCI1_err

77 0x134 Next SCI1_rx

78 0x138 Next SCI1_tx
79 0x13C Next IIC
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The basic ColdFire interrupt controller supports up to 63 request sources mapped as nine priorities for each 
of the seven supported levels (7 levels  9 priorities per level). Within the nine priorities within a level, the 
mid-point is sometimes reserved for package-level IRQ inputs. The levels and priorities within the level 
follow a descending order: 7 > 6 > ... > 1 > 0.

The HCS08 architecture supports a 32-entry exception vector table: the first two vectors are reserved for 
internal CPU/system exceptions and the remaining 30 are available for I/O interrupt requests. The 
requirement for an exact match between the interrupt requests and priorities across two architectures 
means the 30 sources are mapped to a sparsely-populated two-dimensional ColdFire array of seven 
interrupt levels and nine priorities within the level. The following association between the HCS08 and 
ColdFire vector numbers applies:

ColdFire _Vector Number_# = 62 + HCS08 _Vector Number_#

The CF1_INTC performs a cycle-by-cycle evaluation of the active requests and signals the highest-level, 
highest-priority request to the V1 ColdFire core in the form of an encoded interrupt level and the exception 
vector associated with the request. The module also includes a byte-wide peripheral bus interface to access 
its programming model. These interfaces are shown in the simplified block diagram of Figure 19-1.

80 0x140 Next KBIx

81 0x144 Next Reserved
82 0x148 Next ACMPx

83 0x14C Next SCI2_err

84 0x150 Next SCI2_rx

85 0x154 Next SCI2_tx
86 0x158 Next RTC

87 0x15C Next TPM3_ch0

88 0x160 Next TPM3_ch1
89 0x164 Next TPM3_ch2

90 0x168 Next TPM3_ch3

91 0x16C Next TPM3_ch4
92 0x170 Next TPM3_ch5

93 0x174 Next TPM3_ovfl

94–95 0x178–0x17C — Reserved; unused for V1
96 0x180 Next Level 7 Software Interrupt

97 0x184 Next Level 6 Software Interrupt

98 0x188 Next Level 5 Software Interrupt
99 0x18C Next Level 4 Software Interrupt

100 0x190 Next Level 3 Software Interrupt

101 0x194 Next Level 2 Software Interrupt
102 0x198 Next Level 1 Software Interrupt

103–255 0x19C–0x3FC — Reserved; unused for V1

Table 19-2. Sample V1 ColdFire Exception Vector Table (continued)

Vector
Number(s)

Vector
Offset (Hex)

Stacked Program
Counter

Assignment
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Figure 19-1. CF1_INTC Block Diagram

19.1.2 Features

The Version 1 ColdFire interrupt controller includes:

• Memory-mapped off-platform slave module

— 64-byte space located at top end of memory: 0x(FF)FF_FFC0–0x(FF)FF_FFFF

— Programming model accessed via the peripheral bus

— Encoded interrupt level and vector sent directly to processor core

• Support of 35 peripheral I/O interrupt requests plus seven software (one per level) interrupt 
requests

• Fixed association between interrupt request source and level plus priority
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— 35 I/O requests assigned across seven available levels and nine priorities per level

— Exactly matches HCS08 interrupt request priorities

— Up to two requests can be remapped to the highest maskable level + priority

• Unique vector number for each interrupt source

— ColdFire vector number = 62 + HCS08 vector number

— Details on IRQ and vector assignments are device-specific

• Support for service routine interrupt acknowledge (software IACK) read cycles for improved 
system performance

• Combinatorial path provides wake-up signal from wait and sleep modes

19.1.3 Modes of Operation

The CF1_INTC module does not support any special modes of operation. As a memory-mapped slave 
peripheral located on the platform’s IPS peripheral slave bus, it responds based strictly on the memory 
addresses of the connected bus.

The wake-up mode of the CF1_INTC deserves mention. When the device enters a wait or stop mode of 
operation and certain clocks are disabled, there is an input signal that can be asserted to enable a 
purely-combinational logic path for monitoring the assertion of an interrupt request. After a request of 
unmasked level is asserted, this combinational logic path asserts an output signal sent to the clock 
generation logic to re-enable the internal device clocks to exit the low-power mode.

19.2 External Signal Description
The CF1_INTC module does not include any external interfaces.

19.3 Memory Map and Register Definition
The CF1_INTC module provides a 64-byte programming model mapped to the upper region of the 
16 Mbyte address space. All the register names are prefixed with INTC_ as an abbreviation for the full 
module name.

The programming model is referenced using 8-bit accesses. Attempted references to undefined (reserved) 
addresses or with a non-supported access type (for example, a write to a read-only register) generate a bus 
error termination.

The programming model follows the definition from previous ColdFire interrupt controllers. This 
compatibility accounts for the various memory holes in this module’s memory map.

19.3.1 Memory Map

Memory space defined by the V1 ColdFire core uses a 24-bit address, providing support for a 16-MByte 
definition. Table 19-3 shows the resulting system memory map.

The CF1_INTC module is based at address 0x(FF)FF_FFC0 (referred to as CF1_INTC_BASE) and 
occupies the upper 64 bytes of the peripheral space. The module memory map is shown in Table 19-3
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19.3.2 Register Descriptions

The following sections detail the individual registers within the CF1_INTC’s programming model.

19.3.2.1 INTC Force Interrupt Register (INTC_FRC)

The INTC_FRC register allows software to generate a unique interrupt for each possible level at the lowest 
priority within the level for functional or debug purposes. These interrupts may be self-scheduled by 
setting one or more of the bits in the INTC_FRC register. In some cases, the handling of a normal interrupt 
request may cause critical processing by the service routine along with the scheduling (using the 
INTC_FRC register) of a lower priority level interrupt request to be processed at a later time for 
less-critical task handling.

The INTC_FRC register may be modified directly using a read-modify-write sequence or through a simple 
write operation using the set/clear force interrupt registers (INTC_SFRC, INTC_CFRC).

Table 19-3. CF1_INTC Memory Map

Offset 
Address

Register Name Register Description
Width 
(bits)

Access Reset Value
Section/

Page

0x10 INTC_FRC CF1_INTC Force Interrupt Register 8 R/W 0x00 19.3.2.1/19-249

0x18 INTC_PL6P7 CF1_INTC Programmable Level 6, Priority 7 8 R/W 0x00 19.3.2.2/19-250

0x19 INTC_PL6P6 CF1_INTC Programmable Level 6, Priority 6 8 R/W 0x00 19.3.2.2/19-250

0x1B INTC_WCR CF1_INTC Wake-up Control Register 8 R/W 0x00 19.3.2.3/19-251

0x1E INTC_SFRC CF1_INTC Set Interrupt Force Register 8 Write — 19.3.2.4/19-252

0x1F INTC_CFRC CF1_INTC Clear Interrupt Force Register 8 Write — 19.3.2.5/19-253

0x20 INTC_SWIACK CF1_INTC Software Interrupt Acknowledge 8 Read 0x00 19.3.2.6/19-254

0x24 INTC_LVL1IACK CF1_INTC Level 1 Interrupt Acknowledge 8 Read 0x18 19.3.2.6/19-254

0x28 INTC_LVL2IACK CF1_INTC Level 2 Interrupt Acknowledge 8 Read 0x18 19.3.2.6/19-254

0x2C INTC_LVL3IACK CF1_INTC Level 3 Interrupt Acknowledge 8 Read 0x18 19.3.2.6/19-254

0x30 INTC_LVL4IACK CF1_INTC Level 4 Interrupt Acknowledge 8 Read 0x18 19.3.2.6/19-254

0x34 INTC_LVL15ACK CF1_INTC Level 5 Interrupt Acknowledge 8 Read 0x18 19.3.2.6/19-254

0x38 INTC_LVL6IACK CF1_INTC Level 6 Interrupt Acknowledge 8 Read 0x18 19.3.2.6/19-254

0x3C INTC_LVL7IACK CF1_INTC Level 7 Interrupt Acknowledge 8 Read 0x18 19.3.2.6/19-254
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19.3.2.2 INTC Programmable Level 6, Priority {7,6} Registers (INTC_PL6P{7,6})

The level seven interrupt requests cannot have their levels reassigned. However, any of the remaining 
peripheral interrupt requests can be reassigned as the highest priority maskable requests using these two 
registers: INTC_PL6P7 and INTC_PL6P6. The vector number associated with the interrupt requests is not 
changed. Rather, only the interrupt request's level and priority are altered, based on the contents of the 
INTC_PL6P{7,6} registers.

NOTE
The requests associated with the INTC_FRC register have a fixed level and 
priority that cannot be altered. 

Offset: CF1_INTC_BASE + 0x10 (INTC_FRC) Access: Read/Write

7 6 5 4 3 2 1 0

R 0 LVL1 LVL2 LVL3 LVL4 LVL5 LVL6 LVL7

W

Reset 0 0 0 0 0 0 0 0

Figure 0-1 INTC_FRC Register

Table 19-4. INTC_FRC Field Descriptions

Field Description

7 Reserved, must be cleared.

6
LVL1

Force Level 1 interrupt.
0 Negates the forced level 1 interrupt request.
1 Forces a level 1 interrupt request.

5
LVL2

Force Level 2 interrupt.
0 Negates the forced level 2 interrupt request.
1 Forces a level 2 interrupt request.

4
LVL3

Force Level 3 interrupt.
0 Negates the forced level 3 interrupt request.
1 Forces a level 3 interrupt request.

3
LVL4

Force Level 4 interrupt.
0 Negates the forced level 4 interrupt request.
1 Forces a level 4 interrupt request.

2
LVL5

Force Level 5 interrupt.
0 Negates the forced level 5 interrupt request.
1 Forces a level 5 interrupt request.

1
LVL6

Force Level 6 interrupt.
0 Negates the forced level 6 interrupt request.
1 Forces a level 6 interrupt request.

0
LVL7

Force Level 7 interrupt.
0 Negates the forced level 7 interrupt request.
1 Forces a level 7 interrupt request.
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The INTC_PL6P7 register specifies the highest-priority, maskable interrupt request, which is defined as 
the level six, priority seven request. The INTC_PL6P6 register specifies the second-highest-priority, 
maskable interrupt request defined as the level six, priority six request. Reset clears both registers, 
disabling any request re-mapping.

For an example of the use of these registers, see Section 19.6.2.

19.3.2.3 INTC Wake-up Control Register (INTC_WCR)

The interrupt controller provides a combinatorial logic path to generate a special wake-up signal to exit 
from the wait or stop modes. The INTC_WCR register defines wake-up condition for interrupt recognition 
during wait and stop modes. This mode of operation works as follows:

1. Write to the INTC_WCR to enable this operation (INTC_WCR[ENB]) and define the interrupt 
mask level needed to force the core to exit the wait or stop mode (INTC_WCR[MASK]). The 
maximum value of INTC_WCR[MASK] is 0x6 (0b110).

2. Execute a STOP instruction to place the processor into wait or stop mode.

3. After the processor is stopped, the interrupt controller enables special logic that evaluates the 
incoming interrupt sources in a purely combinatorial path; no clocked storage elements are 
involved.

4. If an active interrupt request is asserted and the resulting interrupt level is greater than the mask 
value contained in INTC_WCR[MASK], the interrupt controller asserts the wake-up output signal. 
This signal is routed to the clock generation logic to exit the low-power mode and resume 
processing.

Typically, the interrupt mask level loaded into the processor's status register field (SR[I]) during the 
execution of the STOP instruction matches the INTC_WCR[MASK] value.

The interrupt controller's wake-up signal is defined as:
wake-up = INTC_WCR[ENB] & (level of any asserted_int_request > INTC_WCR[MASK])

Offset:
CF1_INTC_BASE + 0x18 (INTC_PL6P7)
CF1_INTC_BASE + 0x19 (INTC_PL6P6)

Access: Read/Write

7 6 5 4 3 2 1 0

R 0 0 REQN

W

Reset 0 0 0 0 0 0 0 0

Figure 19-2. INTC_PL6P{7,6} Registers

Table 19-5. INTC_PL6P{7,6} Field Descriptions

Field Description

7–5 Reserved, must be cleared.

4–0
REQN

Request number. Defines the peripheral IRQ number to be remapped as the level 6, priority 7 (for INTC_PL6P7) 
request (priority 6 for INTC_PL6P6). This is should be the vector number - 64. The value must be in the valid range 
of interrupts; all other values are ignored.
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19.3.2.4 INTC Set Interrupt Force Register (INTC_SFRC)

The INTC_SFRC register provides a simple memory-mapped mechanism to set a given bit in the 
INTC_FRC register to assert a specific level interrupt request. The data value written causes the 
appropriate bit in the INTC_FRC register to be set. Attempted reads of this register generate an error 
termination.

This register is provided so interrupt service routines can generate a forced interrupt request without the 
need to perform a read-modify-write sequence on the INTC_FRC register.

Offset: CF1_INTC_BASE + 0x1B (INTC_WCR) Access: Read/Write

7 6 5 4 3 2 1 0

R ENB 0 0 0 0 MASK

W

Reset 1 0 0 0 0 0 0 0

Figure 0-2 INTC_WCR Register

Table 19-6. INTC_WCR Field Descriptions

Field Description

7
ENB

Enable 
0 Wake-up signal not enabled
1 Wake-up signal enabled

6–3 Reserved, must be cleared.

2–0
MASK

Interrupt mask level. Defines the interrupt mask level during wait or stop mode and is enforced by the hardware to 
be within the range 0–6. If INTC_WCR[ENB] is set, after an interrupt request of a level higher than MASK is asserted, 
the wake-up signal to the clock generation logic is asserted.

Offset: CF1_INTC_BASE + 0x1E (INTC_SFRC) Access: Write-only

7 6 5 4 3 2 1 0

R

W 0 0 SET

Reset 0 0 0 0 0 0 0 0

Figure 19-3. INTC_SFRC Register
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19.3.2.5 INTC Clear Interrupt Force Register (INTC_CFRC)

The INTC_CFRC register provides a simple memory-mapped mechanism to clear a given bit in the 
INTC_FRC register to negate a specific level interrupt request. The data value on the register write causes 
the appropriate bit in the INTC_FRC register to be cleared. Attempted reads of this register generate an 
error termination.

This register is provided so interrupt service routines can negate a forced interrupt request without the need 
to perform a read-modify-write sequence on the INTC_FRC register.

Table 19-7. INTC_SFRC Field Descriptions

Field Description

7–6 Reserved, must be cleared.

5–0
SET

For data values within the 56–62 range, the corresponding bit in the INTC_FRC register is set, as defined below.
0x38I NTC_FRC[LVL7] is set.
0x39 NTC_FRC[LVL6] is set.
0x3A INTC_FRC[LVL5] is set.
0x3BINTC_FRC[LVL4] is set.
0x3C INTC_FRC[LVL3] is set.
0x3DINTC_FRC[LVL2] is set.
0x3E INTC_FRC[LVL1] is set.
Note: Data values outside this range do not affect the INTC_FRC register. It is recommended the data values be 
restricted to the 0x38–0x3E (56–62) range to ensure compatibility with future devices.

Offset: CF1_INTC_BASE + 0x1F (INTC_CFRC) Access: Write-only

7 6 5 4 3 2 1 0

R

W 0 0 CLR

Reset 0 0 0 0 0 0 0 0

Figure 19-4. INTC_CFRC Register

Table 19-8. INTC_CFRC Field DescriptionsCF1_INTC.fm

Field Description

7–6 Reserved, must be cleared.

5–0
CLR

For data values within the 56–62 range, the corresponding bit in the INTC_FRC register is cleared, as defined below.
0x38 INTC_FRC[LVL7] is cleared.
0x39 INTC_FRC[LVL6] is cleared.
0x3A INTC_FRC[LVL5] is cleared.
0x3B INTC_FRC[LVL4] is cleared.
0x3C INTC_FRC[LVL3] is cleared.
0x3D INTC_FRC[LVL2] is cleared.
0x3E INTC_FRC[LVL1] is cleared.
Data values outside this range do not affect the INTC_FRC register. It is recommended the data values be restricted 
to the 0x38–0x3E (56–62) range to ensure compatibility with future devices.
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19.3.2.6 INTC Software and Level-n IACK Registers (n = 1,2,3,...,7)

The eight read-only interrupt acknowledge (IACK) registers can be explicitly addressed via 
memory-mapped accesses or implicitly addressed via a processor-generated interrupt acknowledge cycle 
during exception processing when CPUCR[IAE] is set. In either case, the interrupt controller's actions are 
similar.

First, consider an IACK cycle to a specific level, a level-n IACK. When this type of IACK arrives in the 
interrupt controller, the controller examines all currently-active level-n interrupt requests, determines the 
highest priority within the level, and then responds with the unique vector number corresponding to that 
specific interrupt source. The vector number is supplied as the data for the byte-sized IACK read cycle.

If there is no active interrupt source at the time of the level-n IACK, a special spurious interrupt vector 
(vector number 24 (0x18)) is returned. It is the responsibility of the service routine to manage this error 
situation.

This protocol implies the interrupting peripheral is not accessed during the acknowledge cycle because the 
interrupt controller completely services the acknowledge. This means the interrupt source must be 
explicitly disabled in the peripheral device by the interrupt service routine. This approach provides unique 
vector capability for all interrupt requests, regardless of the complexity of the peripheral device.

Second, the interrupt controller also supports the concept of a software IACK. This is the ability to query 
the interrupt controller near the end of an interrupt service routine (after the current interrupt request has 
been negated) to determine if there are any pending (but currently masked) interrupt requests. If the 
response to the software IACK's byte operand read is non-zero, the service routine uses the returned value 
as the vector number of the highest pending interrupt request and passes control to the appropriate new 
handler. If the returned value is zero, there is no pending interrupt request.

This process avoids the overhead of a context restore and RTE instruction execution, followed 
immediately by another interrupt exception and context save. In system environments with high rates of 
interrupt activity, this mechanism can noticeably improve overall performance. For additional details on 
software IACKs, see Section 19.6.3.

Offset:
CF1_INTC_BASE + 0x20 (INTC_SWIACK)
CF1_INTC_BASE + 0x20 + (4n) (INTC_LVLnIACK) 

Access: Read-only

7 6 5 4 3 2 1 0

R 0 VECN

W

SWIACK
Reset

0 0 0 0 0 0 0 0

LVLnIACK
Reset

0 0 0 1 1 0 0 0

Figure 19-5. INTC_SWIACK, INTC_LVLnIACK Registers



Interrupt Controller (CF1_INTC)

MMA955xL Intelligent Motion-Sensing Platform, Rev. 0

Freescale Semiconductor, Inc. 255

19.4 Functional Description
The basic operation of the CF1_INTC has been detailed in the preceding sections. This section describes 
special rules applicable to non-maskable level seven interrupt requests and the module’s interfaces.

19.4.1 Handling of Non-Maskable Level 7 Interrupt Requests

Level seven interrupts are treated as non-maskable, edge-sensitive requests while levels one through six 
are maskable, level-sensitive requests. As a result of this definition, level seven interrupt requests are a 
special case. The edge-sensitive nature of these requests means the encoded 3-bit level input from the 
CF1_INTC to the V1 ColdFire core must change state before the CPU detects an interrupt. A 
non-maskable interrupt (NMI) is generated each time the encoded interrupt level changes to level seven 
(regardless of the SR[I] field) and each time the SR[I] mask changes from seven to a lower value while the 
encoded request level remains at seven.

19.5 Initialization Information
The reset state of the CF1_INTC module enables the default IRQ mappings and clears any software-forced 
interrupt requests (INTC_FRC is cleared). The wake-up control register (INTC_WCR) is also disabled, so 
it must be written before the processor executes any STOP instructions to properly exit from any wait or 
stop mode. Immediately after reset, the CF1_INTC begins its cycle-by-cycle evaluation of any asserted 
interrupt requests and forms the appropriate encoded interrupt level and vector information for the V1 
processor core.

19.6 Application Information
This section discusses three application topics: emulation of the HCS08’s one level interrupt nesting 
structure, elevating the priority of two IRQs, and more details on the operation of the software interrupt 
acknowledge (SWIACK) mechanism.

19.6.1 Emulation of the HCS08’s 1-Level IRQ Handling

As noted in Table 19-1, the HCS08 architecture specifies a 1-level IRQ nesting capability. Interrupt 
masking is controlled by CCR[I], the interrupt mask flag: clearing CCR[I] enables interrupts, while setting 
CCR[I] disables interrupts. The ColdFire architecture defines seven interrupt levels, controlled by the 3-bit 

Table 19-9. INTC_SWIACK, INTC_LVLnIACK Field Descriptions

Field Description

7 Reserved, must be cleared.

6–0
VECN

Vector number. Indicates the appropriate vector number.
For the SWIACK register, it is the highest-level, highest-priority request currently being asserted in the CF1_INTC 
module. If there are no pending requests, VECN is zero.
For the LVLnIACK register, it is the highest priority request within the specified level-n. If there are no pending 
requests within the level, VECN is 0x18 (24) to signal a spurious interrupt.
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interrupt priority mask field in the status register, SR[I], and the hardware automatically supports nesting 
of interrupts.

To emulate the HCS08’s 1-level IRQ capabilities on V1 ColdFire, only two SR[I] settings are used:

• Writing 0 to SR[I] enables interrupts.

• Writing 7 to SR[I] disables interrupts.

ColdFire treats the level seven requests as non-maskable, edge-sensitive interrupts.

ColdFire processors inhibit interrupt sampling during the first instruction of all exception handlers. This 
allows any handler to effectively disable interrupts, if necessary, by raising the interrupt mask level 
contained in the status register as the first instruction in the ISR. In addition, the V1 instruction set 
architecture (ISA_C) includes an instruction (STLDSR) that stores the current interrupt mask level and 
loads a value into the SR. This instruction is specifically intended for use as the first instruction of an 
interrupt service routine that services multiple interrupt requests with different interrupt levels. For more 
details see the ColdFire Family Programmer’s Reference Manual. A MOVE-to-SR instruction also 
performs a similar function.

To emulate the HCS08’s 1-level IRQ nesting mechanisms, the ColdFire implementation enables interrupts 
by setting SR[I] = 0 (typically when using RTE to return to a process) and disables interrupts upon entering 
every interrupt service routine by one of three methods:

1. Execution of STLDSR #0x2700 as the first instruction of an ISR.

2. Execution of MOVE.w #0x2700,SR as the first instruction of an ISR.

3. Static assertion of CPUCR[IME], which forces the processor to load SR[I] with seven 
automatically upon the occurrence of an interrupt exception. Because this method removes the 
need to execute multi-cycle instructions of #1 or #2, this approach slightly improves system 
performance. 

19.6.2 Using INTC_PL6P{7,6} Registers

Section 19.3.2.2 describes control registers that provide the ability to dynamically alter the request level 
and priority of two IRQs. Specifically, these registers provide the ability to reassign two IRQs to be the 
highest level 6 (maskable) requests. Consider the following example.

Suppose the system operation desires to remap the slave port wake-up interrupt as the highest maskable 
interrupt. The default assignment for the slave port wake-up is:

• slave port wake-up = vector 82 at level 4, priority 5 

To remap this requests, the INTC_PL6P7 register is programmed with 0x12.

The reset state of the INTC_PL6P{7,6} registers disables any request remapping.

19.6.3 More on Software IACKs

As previously mentioned, the notion of a software IACK refers to the ability to query the interrupt 
controller near the end of an interrupt service routine (after the current interrupt request has been cleared) 
to determine if there are any pending (but currently masked) interrupt requests. If the response to the 
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software IACK’s byte operand read is non-zero, the service routine uses the value as the vector number of 
the highest pending interrupt request and passes control to the appropriate new handler. This process 
avoids the overhead of a context restore and RTE instruction execution, followed immediately by another 
interrupt exception and context save. In system environments with high rates of interrupt activity, this 
mechanism can improve overall system performance noticeably.

To illustrate this concept, consider the following ISR code snippet shown in Figure 19-6.

Figure 19-6. ISR Code Snippet with SWIACK

This snippet includes the prologue and epilogue for an interrupt service routine as well as code needed to 
perform software IACK.

At the entry point (irqxx_entry), there is a two-instruction prologue to allocate space on the supervisor 
stack to save the four volatile registers (d0, d1, a0, a1) defined in the ColdFire application binary interface. 
After these registers have been saved, the ISR continues at the alternate entry point.

The software IACK is performed near the end of the ISR, after the source of the current interrupt request 
has been negated. First, the appropriate memory-mapped byte location in the interrupt controller is read 
(PC = 0x5C0). The CF1_INTC module returns the vector number of the highest priority pending request. 
If no request is pending, zero is returned. The compare instruction is needed to manage a special case 
involving pending level seven requests. Because the level seven requests are non-maskable, ISR is 
interrupted to service one of these requests. To avoid any race conditions, this check ignores the two level 
seven vector numbers. The result is the conditional branch (PC = 0x5C8) is taken if there are no pending 
requests or if the pending request is a level seven. 

If there is a pending non-level seven request, execution continues with a three instruction sequence to 
calculate and then branch to the appropriate alternate ISR entry point. This sequence assumes the 
exception vector table is based at address 0x(00)00_0000 and that each ISR uses the same two-instruction 
prologue shown here. The resulting alternate entry point is a fixed offset (8 bytes) from the normal entry 
point defined in the exception vector table.

align   4
irqxx_entry:

00588: 4fef fff0 lea     -16(sp),sp # allocate stack space
0058c: 48d7 0303 movem.l #0x0303,(sp) # save d0/d1/a0/a1 on stack

irqxx_alternate_entry:
00590:
       ....

irqxx_swiack:
005c0: 71b8 ffe0 mvz.b   INTC_SWIACK.w,d0 # perform software IACK
005c4: 0c00 0041 cmpi.b  #0x41,d0 # pending IRQ or level 7?
005c8: 6f0a ble.b   irqxx_exit # no pending IRQ, then exit
005ca: 91c8 sub.l   a0,a0 # clear a0
005cc: 2270 0c00 move.l  0(a0,d0.l*4),a1 # fetch pointer from xcpt table
005d0: 4ee9 0008 jmp     8(a1) # goto alternate isr entry point

align   4
irqxx_exit:

005d4: 4cd7 0303 movem.l (sp),#0x0303 # restore d0/d1/a0/a1
005d8: 4fef 0010 lea     16(sp),sp # deallocate stack space
005dc: 4e73 rte # return from handler
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The ISR epilogue includes a three instruction sequence to restore the volatile registers from the stack and 
return from the interrupt exception.

This example is intentionally simple, but does show how performing the software IACK and passing 
control to an alternate entry point when there is a pending but masked interrupt request can avoid the 
execution of the ISR epilogue, another interrupt exception, and the ISR prologue.
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Chapter 20  ColdFire Core

20.1 Introduction
This section describes the organization of the Version 1 (V1) ColdFire® processor core and an overview 
of the program-visible registers. For detailed information on instructions, see the ISA C definition in the 
ColdFire Family Programmer’s Reference Manual.

20.2 Overview
As with all ColdFire cores, the V1 ColdFire core is comprised of two separate pipelines decoupled by an 
instruction buffer.

Figure 20-1. V1 ColdFire Core Pipelines

The instruction fetch pipeline (IFP) is a two-stage pipeline for prefetching instructions. The prefetched 
instruction stream is then gated into the two-stage operand execution pipeline (OEP), which decodes the 
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instruction, fetches the required operands and then executes the required function. Because the IFP and 
OEP pipelines are decoupled by an instruction buffer serving as a FIFO queue, the IFP is able to prefetch 
instructions in advance of their actual use by the OEP thereby minimizing time stalled waiting for 
instructions.

The V1 ColdFire core pipeline stages include the following:

• Two-stage Instruction Fetch Pipeline (IFP) (plus optional instruction buffer stage)

— Instruction Address Generation (IAG) — Calculates the next prefetch address

— Instruction fetch Cycle (IC)—Initiates prefetch on the processor’s local bus

— Instruction Buffer (IB) — Optional buffer stage minimizes fetch latency effects using FIFO 
queue

• Two-stage operand execution pipeline (OEP)

— Decode and Select/Operand fetch Cycle (DSOC)—Decodes instructions and fetches the 
required components for effective address calculation, or the operand fetch cycle

— Address Generation/EXecute cycle (AGEX)—Calculates operand address or executes the 
instruction

When the instruction buffer is empty, opcodes are loaded directly from the IC cycle into the operand 
execution pipeline. If the buffer is not empty, the IFP stores the contents of the fetched instruction in the 
IB until it is required by the OEP. The instruction buffer on the V1 core contains three long words of 
storage.

For register-to-register and register-to-memory store operations, the instruction passes through both OEP 
stages once. For memory-to-register and read-modify-write memory operations, an instruction is 
effectively staged through the OEP twice: the first time to calculate the effective address and initiate the 
operand fetch on the processor’s local bus, and the second time to complete the operand reference and 
perform the required function defined by the instruction.

The resulting pipeline and local bus structure allow the V1 ColdFire core to deliver sustained high 
performance across a variety of demanding embedded applications.

20.3 Memory Map/Register Description
The following sections describe the processor registers in the user and supervisor programming models. 
The programming model is selected based on the processor privilege level (user mode or supervisor mode) 
as defined by the S bit of the status register (SR). (The processor’s registers are listed in Table 20-1.)

NOTE
The trace buffer and supervisor mode are not enabled for the MMA955xL.

Table 20-1 lists the processor registers.

The user-programming model consists of the following registers:

• 16 general-purpose 32-bit registers (D0–D7, A0–A7)

• 32-bit program counter (PC)

• 8-bit condition code register (CCR)
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The supervisor programming model is to be used only by system control software to implement restricted 
operating system functions, I/O control, and memory management. All accesses that affect the control 
features of ColdFire processors are in the supervisor programming model, which consists of registers 
available in user mode as well as the following control registers:

• 16-bit Status Register (SR)

• 32-bit Supervisor Stack Pointer (SSP)

• 32-bit Vector Base Register (VBR)

• 32-bit CPU Configuration Register (CPUCR)
3

Table 20-1. ColdFire Core Programming Model

BDM 
Command1

1 The values listed in this column represent the 8-bit BDM command code used when accessing the core registers via the 1-pin 
BDM port. For more information see Chapter 21 Version 1 ColdFire Debug (CF1_DEBUG). (These BDM commands are 
not similar to other ColdFire processors.)

Register
Width
(bits)

Access Reset Value
Written with

MOVEC2

2 If the given register is written using the MOVEC instruction, the 12-bit control register address (Rc) is also specified.

Section/Page

Supervisor/User Access Registers

Load: 0x60
Store: 0x40

Data Register 0 (D0) 32 R/W 0xCF10_029 No 20.3.1/20-26
2

Load: 0x61
Store: 0x41

Data Register 1 (D1) 32 R/W No 20.3.1/20-26
2

Load: 0x6–7
Store: 0x4–7

Data Register –7 (D–D7) 32 R/W POR: Undefined
Else: Unaffected

No 20.3.1/20-26
2

Load: 0x68–E
Store: 0x48–E

Address Register 0–6 (A0–A6) 32 R/W POR: Undefined
Else: Unaffected

No 20.3.2/20-26
2

Load: 0x6F
Store: 0x4F

User A7 Stack Pointer (A7) 32 R/W POR: Undefined
Else: Unaffected

No 20.3.3/20-26
2

Load: 0xEE
Store: 0xCE

Condition Code Register (CCR) 8 R/W POR: Undefined
Else: Unaffected

No 20.3.3.1/20-
263

Load: 0xEF
Store: 0xCF

Program Counter (PC) 32 R/W Contents of 
location 

0x(00)00_0004

No 20.3.4/20-26
4

Supervisor Access Only Registers

Load: 0xE0
Store: 0xC0

Supervisor A7 Stack Pointer 
(OTHER_A7)

32 R/W Contents of 
location 

0x(00)00_0000

No 20.3.3/20-26
2

Load: 0xE1
Store: 0xC1

Vector Base Register (VBR) 32 R/W 0x0000_0000 Yes; 
Rc = 0x801

20.3.5/20-26
4

Load: 0xE2
Store: 0xC2

CPU Configuration Register (CPUCR) 32 W 0x0000_0000 Yes; 
Rc = 0x802

20.3.6/20-26
5

Load: 0xEE
Store: 0xCE

Status Register (SR) 16 R/W 0x27-- No 20.3.7/20-26
6
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20.3.1 Data Registers (D0–D7)

D0–D7 data registers are for bit (1-bit), byte (8-bit), word (16-bit) and longword (32-bit) operations; they 
can also be used as index registers.

NOTE
Registers D0 and D1 contain hardware configuration details after reset. See 
Section 20.4.3.14 for more details.

20.3.2 Address Registers (A0–A6)

These registers can be used as software stack pointers, index registers, or base address registers. They can 
also be used for word and longword operations.

20.3.3 Supervisor/User Stack Pointers (A7 and OTHER_A7)

This ColdFire architecture supports two independent stack pointer (A7) registers—the Supervisor Stack 
Pointer (SSP) and the user stack pointer (USP). The hardware implementation of these two 
program-visible 32-bit registers does not identify one as the SSP and the other as the USP. Instead, the 
hardware uses one 32-bit register as the active A7 and the other as OTHER_A7. Thus, the register contents 
are a function of the processor operation mode, as shown in the following:
if SR[S] = 1

then A7 = Supervisor Stack Pointer
OTHER_A7 = User Stack Pointer

else A7 = User Stack Pointer
OTHER_A7 = Supervisor Stack Pointer

BDM:
Load: 0x60 + n; n = 0-7 (Dn)
Store: 0x40 + n; n = 0-7 (Dn)

Access: User read/write
BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Data

W

Reset
(D2-D7)

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Reset (D0,
D1)

See Section 20.4.3.14

Figure 20-2. Data Registers (D0–D7)

BDM:
Load: 0x68 + n; n = 0–6 (An) 
Store: 0x48 + n; n = 0–6 (An)

Access: User read/write
BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Address

W

Reset – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Figure 20-3. Address Registers (A0–A6)
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The BDM programming model supports direct reads and writes to A7 and OTHER_A7. It is the 
responsibility of the external development system to determine, based on the setting of SR[S], the mapping 
of A7 and OTHER_A7 to the two program-visible definitions (SSP and USP).

To support dual stack pointers, the following two supervisor instructions are included in the ColdFire 
instruction set architecture to load/store the USP:

move.l Ay,USP;move to USP
move.l USP,Ax;move from USP

These instructions are described in the ColdFire Family Programmer’s Reference Manual. All other 
instruction references to the stack pointer, explicit or implicit, access the active A7 register.

NOTE
The USP must be initialized using the move.l Ay,USP instruction before any 
entry into user mode.

The SSP is loaded during reset exception processing with the contents of 
location 0x(00)00_0000.

20.3.3.1 Condition Code Register (CCR)

The CCR is the LSB of the processor status register (SR). Bits 4–0 act as indicator flags for results 
generated by processor operations. The extend bit (X) is also an input operand during multi precision 
arithmetic computations. The CCR register must be explicitly loaded after reset and before any compare 
(CMP), Bcc, or Scc instructions are executed.

BDM:

Load: 0x6F (A7) 
Store: 0x4F (A7)
Load: 0xE0 (OTHER_A7)
Store: 0xC0 (OTHER_A7)

Access: A7: User or BDM read/write
OTHER_A7: Supervisor or BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
Address

W

Reset – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Figure 20-4. Stack Pointer Registers (A7 and OTHER_A7)

BDM:
LSB of Status Register (SR)
Load: 0xEE (SR)
Store: 0xCE (SR)

Access: User read/write
BDM read/write

7 6 5 4 3 2 1 0

R 0 0 0 X N Z V C

W

Reset: 0 0 0 — — — — —

Figure 20-5. Condition Code Register (CCR)
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20.3.4 Program Counter (PC)

The PC contains the currently executing instruction address. During instruction execution and exception 
processing, the processor automatically increments contents of the PC or places a new value in the PC, as 
appropriate. The PC is a base address for PC-relative operand addressing.

The PC is initially loaded during reset exception processing with the contents of location 0x(00)00_0004.

20.3.5 Vector Base Register (VBR)

The VBR contains the base address of the exception vector table in memory. To access the vector table, 
the displacement of an exception vector is added to the value in VBR. The lower 20 bits of the VBR are 
not implemented by ColdFire processors. They are assumed to be zero, forcing the table to be aligned on 
a 1 MByte boundary.

In addition, because the V1 ColdFire core supports a 16-Mbyte address space, the upper byte of the VBR 
is also forced to zero. The VBR can be used to relocate the exception vector table from its default position 
in the flash memory (address 0x(00)00_0000) to the base of the RAM (address 0x(00)80_0000) if needed.

Table 20-2. CCR Field Descriptions

Field Description

7–5 Reserved, must be cleared.

4
X

Extend condition code bit. Set to the C-bit value for arithmetic operations; otherwise not affected or set to a specified 
result.

3
N

Negative condition code bit. Set if most significant bit of the result is set; otherwise cleared.

2
Z

Zero condition code bit. Set if result equals zero; otherwise cleared.

1
V

Overflow condition code bit. Set if an arithmetic overflow occurs implying the result cannot be represented in operand 
size; otherwise cleared.

0
C

Carry condition code bit. Set if a carry out of the operand msb occurs for an addition or if a borrow occurs in a 
subtraction; otherwise cleared.

BDM:
Load: 0xEF (PC)
Store: 0xCF (PC)

Access: User read/write
BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0
Address

W

Reset 0 0 0 0 0 0 0 0 – – – – – – – – – – – – – – – – – – – – – – – –

Figure 20-6. Program Counter Register (PC)
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20.3.6 CPU Configuration Register (CPUCR)

The CPUCR provides supervisor mode configurability of specific core functionality. Certain hardware 
features can be enabled/disabled individually based on the state of the CPUCR.

BDM:
0x801 (VBR)
Load: 0xE1 (VBR)
Store: 0xC1 (VBR)

Access: Supervisor read/write
BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 Base 
Address

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 20-7. Vector Base Register (VBR)

BDM:
0x802 (CPUCR)
Load: 0xE2 (CPUCR)
Store: 0xC2 (CPUCR)

Access: Supervisor read/write
BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 20-8. CPU Configuration Register (CPUCR)

Table 20-3. CPUCR Field Descriptions

Field Description

31
ARD

Address-related reset disable. Used to disable the generation of a reset event in response to a processor exception 
caused by an address error, a bus error, an RTE format error, or a fault-on-fault halt condition.
0 The detection of these types of exception conditions or the fault-on-fault halt condition generate a reset event.
1 No reset is generated in response to these exception conditions.

30
IRD

Instruction-related reset disable. Used to disable the generation of a reset event in response to a processor exception 
caused by the attempted execution of an illegal instruction (except for the ILLEGAL opcode), illegal line A, illegal 
line F instructions, or a privilege violation.
0 The detection of these types of exception conditions generate a reset event.
1 No reset is generated in response to these exception conditions.

29
IAE

Interrupt acknowledge (IACK) enable. Forces the processor to generate an IACK read cycle from the interrupt 
controller during exception processing to retrieve the vector number of the interrupt request being acknowledged. 
The processor’s execution time for an interrupt exception is slightly improved when this bit is cleared.
0 The processor uses the vector number provided by the interrupt controller at the time the request is signaled.
1 IACK read cycle from the interrupt controller is generated.

28
IME

Interrupt mask enable. Forces the processor to raise the interrupt level mask (SR[I]) to 7 during every interrupt 
exception.
0 As part of an interrupt exception, the processor sets SR[I] to the level of the interrupt being serviced.
1 As part of an interrupt exception, the processor sets SR[I] to 7. This disables all level 1-6 interrupt requests but 
allows recognition of the edge-sensitive level 7 requests.
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20.3.7 Status Register (SR)

The SR stores the processor status and includes the CCR, the interrupt priority mask, and other control 
bits. In supervisor mode, software can access the entire SR. In user mode, only the lower 8 bits (CCR) are 
accessible. The control bits indicate the following states for the processor: trace mode (T bit), supervisor 
or user mode (S bit), and master or interrupt state (M bit). All defined bits in the SR have read/write access 
when in supervisor mode. The lower byte of the SR (the CCR) must be loaded explicitly after reset and 
before any compare (CMP), Bcc, or Scc instructions execute.

27
BWD

Buffered write disable. The ColdFire core is capable of marking processor memory writes as bufferable or 
non-bufferable.
0 Writes are buffered and the bus cycle is terminated immediately with zero wait states.
1 Disable the buffering of writes. In this configuration, the write transfer is terminated based on the response time 

of the addressed destination memory device.
Note: If buffered writes are enabled (BWD = 0), any error status is lost as the immediate termination of the data 

transfer assumes an error-free completion.

26 Reserved, must be cleared.

25
FSD

Flash speculation disabled. Disables certain performance-enhancing features related to address speculation in the 
flash memory controller.
0 The flash controller tries to speculate on read accesses to improve processor performance by minimizing the 
exposed flash memory access time. Recall the basic flash access time is two processor cycles.
1 Certain flash address speculation is disabled.

24–0 Reserved, must be cleared.

BDM:
Load: 0xEE (SR)
Store: 0xCE (SR)

Access: Supervisor read/write
BDM read/write

System Byte Condition Code Register (CCR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
T

0
S M

0
I

0 0 0
X N Z V C

W

Reset 0 0 1 0 0 1 1 1 0 0 0 — — — — —

Figure 20-9. Status Register (SR)

Table 20-3. CPUCR Field Descriptions (continued)

Field Description
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20.4 Functional Description

20.4.1 Instruction Set Architecture (ISA_C)

The original ColdFire Instruction Set Architecture (ISA_A) was derived from the M68000 family opcodes 
based on extensive analysis of embedded application code. The ISA was optimized for code compiled 
from high-level languages where the dominant operand size was the 32-bit integer declaration. This 
approach minimized processor complexity and cost, while providing excellent performance for compiled 
applications.

After the initial ColdFire compilers were created, developers noted there were certain ISA additions that 
would enhance code density and overall performance. Additionally, as users implemented ColdFire-based 
designs into a wide range of embedded systems, they found certain frequently-used instruction sequences 
that could be improved by the creation of additional instructions.

The original ISA definition minimized support for instructions referencing byte- and word-sized operands. 
Full support for the move byte and move word instructions was provided, but the only other opcodes 
supporting these data types are CLR (clear) and TST (test). A set of instruction enhancements has been 
implemented in subsequent ISA revisions, ISA_B and ISA_C. The new opcodes primarily addressed the 
following areas: 

• Enhanced support for byte and word-sized operands

• Enhanced support for position-independent code

• Miscellaneous instruction additions to address new functionality

Table 20-4. SR Field Descriptions

Field Description

15
T

Trace enable. When set, the processor performs a trace exception after every instruction.

14 Reserved, must be cleared.

13
S

Supervisor/user state 
0 User mode
1 Supervisor mode

12
M

Master/interrupt state. Bit is cleared by an interrupt exception and software can set it during execution of the RTE or 
move to SR instructions.

11 Reserved, must be cleared.

10–8
I

Interrupt level mask. Defines current interrupt level. Interrupt requests are inhibited for all priority levels less than or 
equal to current level, except edge-sensitive level 7 requests, which cannot be masked.

7–0
CCR

Refer to Section 20.3.3.1, “Condition Code Register (CCR)”.
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Table 20-5 summarizes the instructions added to revision ISA_A to form revision ISA_C. For more details 
see the ColdFire Family Programmer’s Reference Manual.

20.4.2 Exception Processing Overview

Exception processing for ColdFire processors is streamlined for performance. The ColdFire processors 
differ from the M68000 family because they include:

• A simplified exception vector table

• Reduced relocation capabilities using the vector-base register 

• A single exception stack frame format

• Use of separate system stack pointers for user and supervisor modes. 

Table 20-5. Instruction Enhancements over Revision ISA_A

Instruction Description

BITREV The contents of the destination data register are bit-reversed; that is, new Dn[31] equals old Dn[0], new 
Dn[30] equals old Dn[1],..., new Dn[0] equals old Dn[31].

BYTEREV The contents of the destination data register are byte-reversed; that is, new Dn[31:24] equals old 
Dn[7:0],..., new Dn[7:0] equals old Dn[31:24].

FF1 The data register, Dn, is scanned, beginning from the most-significant bit (Dn[31]) and ending with the 
least-significant bit (Dn[0]), searching for the first set bit. The data register is then loaded with the offset 
count from bit 31 where the first set bit appears.

INTOUCH Loads blocks of instructions to be locked in the instruction cache.

MOV3Q.L Moves 3-bit immediate data to the destination location.

Move from USP User Stack Pointer  Destination register

Move to USP Source register  User Stack Pointer

MVS.{B,W} Sign-extends source operand and moves it to destination register.

MVZ.{B,W} Zero-fills source operand and moves it to destination register.

SATS.L Performs saturation operation for signed arithmetic and updates destination register, depending on 
CCR[V] and bit 31 of the register.

TAS.B Performs indivisible read-modify-write cycle to test and set addressed memory byte.

Bcc.L Branch conditionally, longword

BSR.L Branch to sub-routine, longword

CMP.{B,W} Compare, byte and word

CMPA.W Compare address, word

CMPI.{B,W} Compare immediate, byte and word

MOVEI Move immediate, byte and word to memory using Ax with displacement

STLDSR Pushes the contents of the status register onto the stack and then reloads the status register with the 
immediate data value.
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All ColdFire processors use an instruction restart exception model. Exception processing includes all 
actions from fault condition detection to the initiation of fetch for first handler instruction. Exception 
processing is comprised of four major steps:

1. The processor makes an internal copy of the SR and then enters supervisor mode by setting the 
S bit and disabling trace mode by clearing the T bit. The interrupt exception also forces the M bit 
to be cleared and the interrupt priority mask to set to current interrupt request level.

2. The processor determines the exception vector number. For all faults except interrupts, the 
processor performs this calculation based on exception type. For interrupts, the processor performs 
an interrupt-acknowledge (IACK) bus cycle to obtain the vector number from the interrupt 
controller if CPUCR[IAE] is set. The IACK cycle is mapped to special locations within the 
interrupt controller’s address space with the interrupt level encoded in the address. If 
CPUCR[IAE] is cleared, the processor uses the vector number supplied by the interrupt controller 
at the time the request was signaled for improved performance.

3. The processor saves the current context by creating an exception stack frame on the system stack. 
The exception stack frame is created at a 0-modulo-4 address on top of the system stack pointed to 
by the supervisor stack pointer (SSP). As shown in Figure 20-10, the processor uses a simplified 
fixed-length stack frame for all exceptions. The exception type determines whether the program 
counter placed in the exception stack frame defines the location of the faulting instruction (fault) 
or the address of the next instruction to be executed (next).

4. The processor calculates the address of the first instruction of the exception handler. By definition, 
the exception vector table is aligned on a 1 Mbyte boundary. This instruction address is generated 
by fetching an exception vector from the table located at the address defined in the vector base 
register. The index into the exception table is calculated as (4  vector number). After the exception 
vector has been fetched, the vector contents determine the address of the first instruction of the 
desired handler. After the instruction fetch for the first opcode of the handler has initiated, 
exception processing terminates and normal instruction processing continues in the handler.

All ColdFire processors support a 1024-byte vector table aligned on any 1 Mbyte address boundary (see 
Table 20-6). For the V1 ColdFire core, the only practical locations for the vector table are based at 
0x(00)00_0000 in the flash or 0x(00)80_0000 in the RAM.

The table contains 256 exception vectors; the first 64 are defined for the core and the remaining 192 are 
device-specific peripheral interrupt vectors. Chapter 19, “Interrupt Controller (CF1_INTC)” for details on the 
device-specific interrupt sources.

For the V1 ColdFire core, the table is partially populated with the first 64 reserved for internal processor 
exceptions, while vectors 64-102 are reserved for the peripheral I/O requests and the seven software 
interrupts. Vectors 103–255 are unused and reserved.

Table 20-6. Exception Vector Assignments

Vector
Number(s)

Vector
Offset (Hex)

Stacked Program
Counter

Assignment

0 0x000 — Initial supervisor stack pointer

1 0x004 — Initial program counter

2 0x008 Fault Access error
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3 0x00C Fault Address error

4 0x010 Fault Illegal instruction

5–7 0x01–0x01C — Reserved

8 0x020 Fault Privilege violation

9 0x024 Next Trace

10 0x028 Fault Unimplemented line-A opcode

11 0x02C Fault Unimplemented line-F opcode

12 0x030 Next Debug interrupt

13 0x034 — Reserved

14 0x038 Fault Format error

15–23 0x03C–0x05C — Reserved

24 0x060 Next Spurious interrupt

25–31 0x064–0x07C — Reserved

32–47 0x080–0x0BC Next Trap # 0-15 instructions

48–60 0x0C0–0x0F0 — Reserved

61 0x0F4 Fault Unsupported instruction

62–63 0x0F8–0x0FC — Reserved

64–102 0x100–0x198 Next Device-specific interrupts

103–255 0x19C–0x3FC — Reserved, unused for V1

1 Fault refers to the PC of the instruction that caused the exception. Next refers to the PC of the instruction that follows the 
instruction that caused the fault.

Table 20-6. Exception Vector Assignments (continued)

Vector
Number(s)

Vector
Offset (Hex)

Stacked Program
Counter

Assignment
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All ColdFire processors inhibit interrupt sampling during the first instruction of all exception handlers. 
This allows any handler to disable interrupts effectively, if necessary, by raising the interrupt mask level 
contained in the status register. In addition, the ISA_C architecture includes an instruction (STLDSR) that 
stores the current interrupt mask level and loads a value into the SR. This instruction is specifically 
intended for use as the first instruction of an interrupt service routine that services multiple interrupt 
requests with different interrupt levels. Finally, the V1 ColdFire core includes the CPUCR[IME] bit that 
forces the processor to automatically raise the mask level to 7 during the interrupt exception, removing the 
need for any explicit instruction in the service routine to perform this function. For more details, see 
ColdFire Family Programmer’s Reference Manual.

20.4.2.1 Exception Stack Frame Definition

Figure 20-10 shows exception stack frame. The first long-word contains the 16-bit format/vector word 
(F/V) and the 16-bit status register, and the second long-word contains the 32-bit program counter address.

The 16-bit format/vector word contains three unique fields:

• A four-bit format field at the top of the system stack is always written with a value of 4, 5, 6, or 7 
by the processor, indicating a two-longword frame format.

• There is a 4-bit fault status field, FS[3:0], at the top of the system stack. This field is defined for 
access and address errors only and written as zeros for all other exceptions. 

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SSP  Format FS[3:2] Vector FS[1:0] Status Register

+ 0x4 Program Counter

Figure 20-10. Exception Stack Frame Form

Table 20-7. Format Field Encodings

Original SSP @ Time of Exception, Bits 1:0 SSP @ 1st Instruction of Handler Format Field

00 Original SSP - 8 0100

01 Original SSP - 9 0101

10 Original SSP - 10 0110

11 Original SSP - 11 0111

Table 20-8. Fault Status Encodings

FS[3:0] Definition

00xx Reserved

0100 Error on instruction fetch

0101 Reserved

011x Reserved

1000 Error on operand write

1001 Reserved
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• The 8-bit vector number, vector[7:0], defines the exception type and is calculated by the processor 
for all internal faults and represents the value supplied by the interrupt controller in case of an 
interrupt. See Table 20-6.

20.4.3 Processor Exceptions

20.4.3.1 Access Error Exception

The default operation of the V1 ColdFire processor is the generation of an illegal address reset event if an 
access error (also known as a bus error) is detected. If CPUCR[ARD] is set, the reset is disabled and a 
processor exception is generated as detailed below.

The exact processor response to an access error depends on the memory reference being performed. For 
an instruction fetch, the processor postpones the error reporting until the faulted reference is needed by an 
instruction for execution. Therefore, faults during instruction prefetches followed by a change of 
instruction flow do not generate an exception. When the processor attempts to execute an instruction with 
a faulted op word and/or extension words, the access error is signaled and the instruction aborted. For this 
type of exception, the programming model has not been altered by the instruction generating the access 
error.

If the access error occurs on an operand read, the processor immediately aborts the current instruction’s 
execution and initiates exception processing. In this situation, any address register updates attributable to 
the auto-addressing modes, (for example, (An)+,-(An)), have already been performed, so the programming 
model contains the updated An value. In addition, if an access error occurs during a MOVEM instruction 
loading from memory, any registers already updated before the fault occurs contain the operands from 
memory.

The V1 ColdFire processor uses an imprecise reporting mechanism for access errors on operand writes. 
Because the actual write cycle may be decoupled from the processor’s issuing of the operation, the 
signaling of an access error appears to be decoupled from the instruction that generated the write. 
Accordingly, the PC contained in the exception stack frame merely represents the location in the program 
when the access error was signaled. All programming model updates associated with the write instruction 
are completed. The NOP instruction can collect access errors for writes. This instruction delays its 
execution until all previous operations, including all pending write operations, are complete. If any 
previous write terminates with an access error, it is guaranteed to be reported on the NOP instruction.

101x Reserved

1100 Error on operand read

1101 Reserved

111x Reserved

Table 20-8. Fault Status Encodings (continued)

FS[3:0] Definition
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20.4.3.2 Address Error Exception

The default operation of the V1 ColdFire processor is the generation of an illegal address reset event if an 
address error is detected. If CPUCR[ARD] equals 1, then the reset is disabled and a processor exception 
is generated as detailed below.

Any attempted execution transferring control to an odd instruction address (if bit 0 of the target address is 
set) results in an address error exception.

Any attempted use of a word-sized index register (Xn.w) or a scale factor of eight on an indexed effective 
addressing mode generates an address error, as does an attempted execution of a full-format indexed 
addressing mode, which is defined by bit 8 of extension word 1 being set.

If an address error occurs on an RTS instruction, the Version 1 ColdFire processor overwrites the faulting 
return PC with the address error stack frame.

20.4.3.3 Illegal Instruction Exception

The default operation of the V1 ColdFire processor is the generation of an illegal opcode reset event if an 
illegal instruction is detected. If CPUCR[IRD] is set, the reset is disabled and a processor exception is 
generated as detailed below. There is one special case involving the ILLEGAL opcode (0x4AFC); 

attempted execution of this instruction always generates an illegal instruction exception, regardless of the 
state of the CPUCR[IRD] bit.

The ColdFire variable-length instruction set architecture supports three instruction sizes: 16, 32, or 48 bits. 
The first instruction word is known as the operation word (or op word), while the optional words are 
known as extension word 1 and extension word 2. The op word is further subdivided into three sections: 
the upper four bits segment the entire ISA into 16 instruction lines, the next 6 bits define the operation 
mode (op mode), and the low-order 6 bits define the effective address. See Figure 20-11. The op word line 
definition is shown in Table 20-9.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Line OpMode Effective Address

Mode Register

Figure 20-11. ColdFire Instruction Operation Word (Opword) Format

Table 20-9. ColdFire Op Word Line Definition

Opword[Line] Instruction Class

0x0 Bit manipulation, Arithmetic and Logical Immediate

0x1 Move Byte

0x2 Move Long

0x3 Move Word

0x4 Miscellaneous

0x5 Add (ADDQ) and Subtract Quick (SUBQ), Set according to Condition Codes (Scc)
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In the original M68000 ISA definition, lines A and F were effectively reserved for user-defined operations 
(line A) and co-processor instructions (line F). Accordingly, there are two unique exception vectors 
associated with illegal opwords in these two lines.

Any attempted execution of an illegal 16-bit opcode (except for line-A and line-F opcodes) generates an 
illegal instruction exception (vector 4). Additionally, any attempted execution of any line-A and most 
line-F opcodes generate their unique exception types, vector numbers 10 and 11, respectively. ColdFire 
cores do not provide illegal instruction detection on the extension words on any instruction, including 
MOVEC.

The V1 ColdFire processor also detects two special cases involving illegal instruction conditions: 

1. If execution of the stop instruction is attempted and neither low-power stop nor wait modes are 
enabled, the processor signals an illegal instruction. 

2. If execution of the halt instruction is attempted and BDM is not enabled 
(XCSR[ENBDM] equals 0), the processor signals an illegal instruction.

In both cases, the processor response is then dependent on the state of CPUCR[IRD]— a reset event or a 
processor exception.

20.4.3.4 Privilege Violation

The default operation of the V1 ColdFire processor is the generation of an illegal opcode reset event if a 
privilege violation is detected. If CPUCR[IRD] is set, the reset is disabled and a processor exception is 
generated as detailed below.

The attempted execution of a supervisor mode instruction while in user mode generates a privilege 
violation exception. See ColdFire Programmer’s Reference Manual for a list of supervisor-mode 
instructions.

0x6 PC-relative change-of-flow instructions
Conditional (Bcc) and unconditional (BRA) branches, subroutine calls (BSR)

0x7 Move Quick (MOVEQ), Move with sign extension (MVS) and zero fill (MVZ)

0x8 Logical OR (OR)

0x9 Subtract (SUB), Subtract Extended (SUBX)

0xA Move 3-bit Quick (MOV3Q)

0xB Compare (CMP), Exclusive-OR (EOR)

0xC Logical AND (AND), Multiply Word (MUL)

0xD Add (ADD), Add Extended (ADDX)

0xE Arithmetic and logical shifts (ASL, ASR, LSL, LSR)

0xF Write DDATA (WDDATA), Write Debug (WDEBUG)

Table 20-9. ColdFire Op Word Line Definition (continued)

Opword[Line] Instruction Class
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There is one special case involving the HALT instruction. Normally, this opcode is a supervisor mode 
instruction, but if the debug module's CSR[UHE] is set, then this instruction can be also be executed in 
user mode for debugging purposes.

20.4.3.5 Trace Exception

To aid in program development, all ColdFire processors provide an instruction-by-instruction tracing 
capability. While in trace mode, indicated by setting of the SR[T] bit, the completion of an instruction 
execution (for all but the stop instruction) signals a trace exception. This functionality allows a debugger 
to monitor program execution.

The stop instruction has the following effects:

1. The instruction before the stop executes and then generates a trace exception. In the exception stack 
frame, the PC points to the stop opcode.

2. When the trace handler is exited, the stop instruction executes, loading the SR with the immediate 
operand from the instruction.

3. The processor then generates a trace exception. The PC in the exception stack frame points to the 
instruction after the stop, and the SR reflects the value loaded in the previous step.

If the processor is not in trace mode and executes a stop instruction where the immediate operand sets 
SR[T], hardware loads the SR and generates a trace exception. The PC in the exception stack frame points 
to the instruction after the stop, and the SR reflects the value loaded in step 2. 

Because ColdFire processors do not support any hardware stacking of multiple exceptions, it is the 
responsibility of the operating system to check for trace mode after processing other exception types. As 
an example, consider a TRAP instruction execution while in trace mode. The processor initiates the trap 
exception and then passes control to the corresponding handler. If the system requires that a trace exception 
be processed, it is the responsibility of the trap exception handler to check for this condition (SR[T] in the 
exception stack frame set) and pass control to the trace handler before returning from the original 
exception.

20.4.3.6 Unimplemented Line-A Opcode

The default operation of the V1 ColdFire processor is the generation of an illegal opcode reset event if an 
unimplemented line-A opcode is detected. If CPUCR[IRD] is set, the reset is disabled and a processor 
exception is generated as detailed below.

A line-A opcode is defined when bits 15-12 of the opword are 0b1010. This exception is generated by the 
attempted execution of an undefined line-A opcode.

20.4.3.7 Unimplemented Line-F Opcode

The default operation of the V1 ColdFire processor is the generation of an illegal opcode reset event if an 
unimplemented line-F opcode is detected. If CPUCR[IRD] is set, the reset is disabled and a processor 
exception is generated as detailed below.

A line-F opcode is defined when bits 15-12 of the opword are 0b1111. This exception is generated when 
attempting to execute an undefined line-F opcode
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20.4.3.8 Debug Interrupt

See Chapter 21 Version 1 ColdFire Debug (CF1_DEBUG), for a detailed explanation of this exception, which 
is generated in response to a hardware breakpoint register trigger. The processor does not generate an 
IACK cycle, but rather calculates the vector number internally (vector number 12). Additionally, SR[M,I] 
are unaffected by the interrupt.

20.4.3.9 RTE and Format Error Exception

The default operation of the V1 ColdFire processor is the generation of an illegal address reset event if an 
RTE format error is detected. If CPUCR[ARD] is set, the reset is disabled and a processor exception is 
generated as detailed below.

When an RTE instruction is executed, the processor first examines the 4-bit format field to validate the 
frame type. For a ColdFire core, any attempted RTE execution (where the format is not equal to {4,5,6,7}) 
generates a format error. The exception stack frame for the format error is created without disturbing the 
original RTE frame and the stacked PC pointing to the RTE instruction.

The selection of the format value provides some limited debug support for porting code from M68000 
applications. On M68000 family processors, the SR was located at the top of the stack. On those 
processors, bit 30 of the longword addressed by the system stack pointer is typically zero. Thus, if an RTE 
is attempted using this old format, it generates a format error on a ColdFire processor.

If the format field defines a valid type, the processor: (1) reloads the SR operand, (2) fetches the second 
longword operand, (3) adjusts the stack pointer by adding the format value to the auto-incremented address 
after the fetch of the first longword, and then (4) transfers control to the instruction address defined by the 
second longword operand within the stack frame.

20.4.3.10 TRAP Instruction Exception

The TRAP #n instruction always forces an exception as part of its execution and is useful for implementing 
system calls. The TRAP instruction may be used to change from user to supervisor mode.

This set of 16 instructions provides a similar but expanded functionality compared to the S08’s SWI 
(software interrupt) instruction. These instructions and their functionality should not be confused with the 
software-scheduled interrupt requests, which are handled like normal I/O interrupt requests by the 
interrupt controller. The processing of the software-scheduled IRQs can be masked, based on the interrupt 
priority level defined by the SR[I] field.

20.4.3.11 Unsupported Instruction Exception

If execution of a valid instruction is attempted but the required hardware is not present in the processor, an 
unsupported instruction exception is generated. The instruction functionality can then be emulated in the 
exception handler, if desired.

All ColdFire cores record the processor hardware configuration in the D0 register immediately after the 
negation of RESET. See Section 20.4.3.14, “Reset Exception”, for details.
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20.4.3.12 Interrupt Exception

Interrupt exception processing includes interrupt recognition and the fetch of the appropriate vector from 
the interrupt controller using an IACK cycle. See Chapter 19, “Interrupt Controller (CF1_INTC)”, for details on 
the interrupt controller.

20.4.3.13 Fault-on-Fault Halt

The default operation of the V1 ColdFire processor is the generation of an illegal address reset event if a 
fault-on-fault halt condition is detected. If CPUCR[ARD] is set, the reset is disabled and the processor is 
halted as detailed below.

If a ColdFire processor encounters any type of fault during the exception processing of another fault, the 
processor immediately halts execution with the catastrophic fault-on-fault condition. A reset is required to 
force the processor to exit this halted state.

20.4.3.14 Reset Exception

Asserting the reset input signal (RESET) to the processor causes a reset exception. The reset exception has 
the highest priority of any exception; it provides for system initialization and recovery from catastrophic 
failure. Reset also aborts any processing in progress when the reset input is recognized. Processing cannot 
be recovered.

The reset exception places the processor in the supervisor mode by setting the SR[S] bit and disables 
tracing by clearing the SR[T] bit. This exception also clears the SR[M] bit and sets the processor’s SR[I] 
field to the highest level (level 7, 0b111). Next, the VBR is initialized to zero (0x0000_0000). The control 
registers specifying the operation of any memories (e.g., cache and/or RAM modules) connected directly 
to the processor are disabled.

NOTE
Other implementation-specific registers are also affected. Refer to each 
module in this reference manual for details on these registers.

After the processor is granted the bus, it performs two longword read-bus cycles. The first longword at 
address 0x(00)00_0000 is loaded into the supervisor stack pointer and the second longword at address 
0x(00)00_0004 is loaded into the program counter. After the initial instruction is fetched from memory, 
program execution begins at the address in the PC. If an access error or address error occurs before the first 
instruction is executed, the processor enters the fault-on-fault state.

ColdFire processors load hardware configuration information into the D0 and D1 general-purpose 
registers after system reset. The hardware configuration information is loaded immediately after the 
reset-in signal is negated. This allows an emulator to read out the contents of these registers via the BDM 
to determine the hardware configuration.

Information loaded into D0 defines the processor hardware configuration as shown in Figure 20-12.
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BDM:
Load: 0x60 (D0)
Store: 0x40 (D0)

Access: User read-only
BDM read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PF VER REV

W

Reset 1 1 0 0 1 1 1 1 0 0 0 1 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R MAC DIV EMAC FPU 0 0 ISA DEBUG

W

Reset 0 0 0 0 0 1 0 1 0 0 1

Figure 20-12. D0 Hardware Configuration Info

Table 20-10. D0 Hardware Configuration Info Field Description

Field Description

31–24
PF

Processor family. This field is fixed to a hex value of 0xCF indicating a ColdFire core is present.

23–20
VER

ColdFire core version number. Defines the hardware microarchitecture version of ColdFire core.
0001 V1 ColdFire core 
Else Reserved for future use

19–16
REV

Processor revision number. The default is 0b000.

15
MAC

MAC present. This bit signals if the optional multiply-accumulate (MAC) execution engine is present in processor core.
0 MAC execute engine not present in core.
1 MAC execute engine is present in core.

14
DIV

Divide present. This bit signals if the hardware divider (DIV) is present in the processor core.
0 Divide execute engine not present in core. (This is the value used for this device.)
1 Divide execute engine is present in core.

13
EMAC

EMAC present. This bit signals if the optional enhanced multiply-accumulate (EMAC) execution engine is present in 
processor core.
0 EMAC execute engine not present in core. (This is the value used for this device.)
1 EMAC execute engine is present in core. 

12
FPU

FPU present. This bit signals if the optional floating-point (FPU) execution engine is present in processor core.
0 FPU execute engine not present in core. (This is the value used for this device.)
1 FPU execute engine is present in core. 

11 Reserved.

10–8 Reserved.
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Information loaded into D1 defines the local memory hardware configuration as shown in the figure below.

7–4
ISA

ISA revision. Defines the instruction-set architecture (ISA) revision level implemented in ColdFire processor core.
0010 ISA_C
Else Reserved

3–0
DEBUG

Debug module revision number. Defines revision level of the debug module used in the ColdFire processor core.
1001 DEBUG_B+
Else Reserved

BDM:
Load: 0x61 (D1)
Store: 0x41 (D1)

Access: User read-only
BDM read-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 0 0 1 0 0 0 0 FLASHSZ 0 0 0

W

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 1 0 0 0 0 SRAMSZ 0 0 0

W

Figure 20-13. D1 Hardware Configuration Info

Table 20-11. D1 Hardware Configuration Information Field Description

Field Description

31–24 Reserved.

23–19
FLASHSZ

Flash bank size. 
0000-0111 No flash
100064-Kbyte flash 
1001128-Kbyte flash
1010256-Kbyte flash
1011512-Kbyte flash
ElseReserved for future use.

18–16 Reserved

15–8 Reserved, resets to 0b010000

Table 20-10. D0 Hardware Configuration Info Field Description (continued)

Field Description
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20.4.4 Instruction Execution Timing

This section presents processor instruction execution times in terms of processor-core clock cycles. The 
number of operand references for each instruction is enclosed in parentheses following the number of 
processor clock cycles. Each timing entry is presented as C(R/W) where:

• C is the number of processor clock cycles, including all applicable operand fetches and writes, and 
all internal core cycles required to complete the instruction execution.

• R/W is the number of operand reads (R) and writes (W) required by the instruction. An operation 
performing a read-modify-write function is denoted as (1/1).

This section includes the assumptions concerning the timing values and the execution time details.

20.4.4.1 Timing Assumptions

For the timing data presented in this section, these assumptions apply:

1. The OEP is loaded with the opword and all required extension words at the beginning of each 
instruction execution. This implies that the OEP does not wait for the IFP to supply opwords and/or 
extension words.

2. The OEP does not experience any sequence-related pipeline stalls. The most common example of 
stall involves consecutive store operations, excluding the MOVEM instruction. For all STORE 
operations (except MOVEM), certain hardware resources within the processor are marked as busy 
for two clock cycles after the final decode and select/operand fetch cycle (DSOC) of the store 
instruction. If a subsequent STORE instruction is encountered within this 2-cycle window, it is 
stalled until the resource again becomes available. Thus, the maximum pipeline stall involving 
consecutive STORE operations is two cycles. The MOVEM instruction uses a different set of 
resources and this stall does not apply.

3. The OEP completes all memory accesses without any stall conditions caused by the memory itself. 
Thus, the timing details provided in this section assume that an infinite zero-wait state memory is 
attached to the processor core.

7–3
SRAMSZ

SRAM bank size.
00000 No SRAM
00010 512 bytes
00100 1 Kbytes
00110 2 Kbytes
01000 4 Kbytes
01010 8 Kbytes
01100 16 Kbytes
01110 32 Kbytes
10010 128 Kbytes
Else Reserved for future use

2–0 Reserved.

Table 20-11. D1 Hardware Configuration Information Field Description (continued)

Field Description
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4. All operand data accesses are aligned on the same byte boundary as the operand size; for example, 
16-bit operands aligned on 0-modulo-2 addresses, 32-bit operands aligned on 0-modulo-4 
addresses.

The processor core decomposes misaligned operand references into a series of aligned accesses as shown 
in Table 20-12.

20.4.4.2 MOVE Instruction Execution Times

Table 20-14 lists execution times for MOVE.{B,W} instructions; Table 20-15 lists timings for MOVE.L. 

NOTE
For all tables in this section, the execution time of any instruction using the 
PC-relative effective addressing modes is the same for the comparable 
An-relative mode.

The nomenclature xxx.wl refers to both forms of absolute addressing, xxx.w 
and xxx.l.

Table 20-12. Misaligned Operand References

address[1:0] Size Bus Operations Additional C(R/W)

01 or 11 Word Byte, Byte 2(1/0) if read
1(0/1) if write

01 or 11 Long Byte, Word, Byte 3(2/0) if read
2(0/2) if write

10 Long Word, Word 2(1/0) if read
1(0/1) if write

Table 20-13. 

ET with {<ea> = (d16,PC)} equals ET with {<ea> = (d16,An)} 

ET with {<ea> = (d8,PC,Xi*SF)} equals ET with {<ea> = (d8,An,Xi*SF)}

Table 20-14. MOVE Byte and Word Execution Times

Source
Destination 

Rx (Ax) (Ax)+ -(Ax) (d16,Ax) (d8,Ax,Xi*SF) xxx.wl

Dy 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)

Ay 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)

(Ay) 2(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1)) 3(1/1)

(Ay)+ 2(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1)) 3(1/1)

-(Ay) 2(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1)) 3(1/1)

(d16,Ay) 2(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) — —

(d8,Ay,Xi*SF) 3(1/0) 4(1/1) 4(1/1) 4(1/1) — — —
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20.4.4.3 Standard One Operand Instruction Execution Times

xxx.w 2(1/0) 3(1/1) 3(1/1) 3(1/1) — — —

xxx.l 2(1/0) 3(1/1) 3(1/1) 3(1/1) — — —

(d16,PC) 2(1/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) — —

(d8,PC,Xi*SF) 3(1/0) 4(1/1) 4(1/1) 4(1/1)) — — —

#xxx 1(0/0) 3(0/1) 3(0/1) 3(0/1) 1(0/1) — —

Table 20-15. MOVE Long Execution Times

Source
Destination

Rx (Ax) (Ax)+ -(Ax) (d16,Ax) (d8,Ax,Xi*SF) xxx.wl

Dy 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)

Ay 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1)

(Ay) 2(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

(Ay)+ 2(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

-(Ay) 2(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) 3(1/1) 2(1/1)

(d16,Ay) 2(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) — —

(d8,Ay,Xi*SF) 3(1/0) 3(1/1) 3(1/1) 3(1/1) — — —

xxx.w 2(1/0) 2(1/1) 2(1/1) 2(1/1) — — —

xxx.l 2(1/0) 2(1/1) 2(1/1) 2(1/1) — — —

(d16,PC) 2(1/0) 2(1/1) 2(1/1) 2(1/1) 2(1/1) — —

(d8,PC,Xi*SF) 3(1/0) 3(1/1) 3(1/1) 3(1/1) — — —

#xxx 1(0/0) 2(0/1) 2(0/1) 2(0/1) — — —

Table 20-16. One Operand Instruction Execution Times

Opcode <EA>
Effective Address

Rn (An) (An)+ -(An) (d16,An) (d8,An,Xn*SF) xxx.wl #xxx

BITREV Dx 1(0/0) — — — — — — —

BYTEREV Dx 1(0/0) — — — — — — —

CLR.B <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —

CLR.W <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —

CLR.L <ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —

Table 20-14. MOVE Byte and Word Execution Times (continued)

Source
Destination 

Rx (Ax) (Ax)+ -(Ax) (d16,Ax) (d8,Ax,Xi*SF) xxx.wl



ColdFire Core

MMA955xL Intelligent Motion-Sensing Platform, Rev. 0

Freescale Semiconductor, Inc. 283

20.4.4.4 Standard Two Operand Instruction Execution Times

EXT.W Dx 1(0/0) — — — — — — —

EXT.L Dx 1(0/0) — — — — — — —

EXTB.L Dx 1(0/0) — — — — — — —

FF1 Dx 1(0/0) — — — — — — —

NEG.L Dx 1(0/0) — — — — — — —

NEGX.L Dx 1(0/0) — — — — — — —

NOT.L Dx 1(0/0) — — — — — — —

SATS.L Dx 1(0/0) — — — — — — —

SCC Dx 1(0/0) — — — — — — —

SWAP Dx 1(0/0) — — — — — — —

TAS.B <ea> — 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —

TST.B <ea> 1(0/0) 2(1/0) 2(1/0) 2(1/0) 2(1/0) 3(1/0) 2(1/0) 1(0/0)

TST.W <ea> 1(0/0) 2(1/0) 2(1/0) 2(1/0) 2(1/0) 3(1/0) 2(1/0) 1(0/0)

TST.L <ea> 1(0/0) 2(1/0) 2(1/0) 2(1/0) 2(1/0) 3(1/0) 2(1/0) 1(0/0)

Table 20-17. Two Operand Instruction Execution Times

Opcode <EA>

Effective Address

Rn (An) (An)+ -(An)
(d16,An)
(d16,PC)

(d8,An,Xn*SF)
(d8,PC,Xn*SF)

xxx.wl #xxx

ADD.L <ea>,Rx 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)

ADD.L Dy,<ea> — 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —

ADDI.L #imm,Dx 1(0/0) — — — — — — —

ADDQ.L #imm,<ea> 1(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —

ADDX.L Dy,Dx 1(0/0) — — — — — — —

AND.L <ea>,Rx 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)

AND.L Dy,<ea> — 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —

ANDI.L #imm,Dx 1(0/0) — — — — — — —

ASL.L <ea>,Dx 1(0/0) — — — — — — 1(0/0)

ASR.L <ea>,Dx 1(0/0) — — — — — — 1(0/0)

BCHG Dy,<ea> 2(0/0) 4(1/1) 4(1/1) 4(1/1) 4(1/1) 5(1/1) 4(1/1) —

Table 20-16. One Operand Instruction Execution Times (continued)

Opcode <EA>
Effective Address

Rn (An) (An)+ -(An) (d16,An) (d8,An,Xn*SF) xxx.wl #xxx
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BCHG #imm,<ea> 2(0/0) 4(1/1) 4(1/1) 4(1/1) 4(1/1) — — —

BCLR Dy,<ea> 2(0/0) 4(1/1) 4(1/1) 4(1/1) 4(1/1) 5(1/1) 4(1/1) —

BCLR #imm,<ea> 2(0/0) 4(1/1) 4(1/1) 4(1/1) 4(1/1) — — —

BSET Dy,<ea> 2(0/0) 4(1/1) 4(1/1) 4(1/1) 4(1/1) 5(1/1) 4(1/1) —

BSET #imm,<ea> 2(0/0) 4(1/1) 4(1/1) 4(1/1) 4(1/1) — — —

BTST Dy,<ea> 2(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) —

BTST #imm,<ea> 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) — — —

CMP.B <ea>,Rx 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)

CMP.W <ea>,Rx 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)

CMP.L <ea>,Rx 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)

CMPI.B #imm,Dx 1(0/0) — — — — — — —

CMPI.W #imm,Dx 1(0/0) — — — — — — —

CMPI.L #imm,Dx 1(0/0) — — — — — — —

EOR.L Dy,<ea> 1(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —

EORI.L #imm,Dx 1(0/0) — — — — — — —

LEA <ea>,Ax — 1(0/0) — — 1(0/0) 2(0/0) 1(0/0) —

LSL.L <ea>,Dx 1(0/0) — — — — — — 1(0/0)

LSR.L <ea>,Dx 1(0/0) — — — — — — 1(0/0)

MOVEQ.L #imm,Dx — — — — — — — 1(0/0)

OR.L <ea>,Rx 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)

OR.L Dy,<ea> — 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —

ORI.L #imm,Dx 1(0/0) — — — — — — —

SUB.L <ea>,Rx 1(0/0) 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) 1(0/0)

SUB.L Dy,<ea> — 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —

SUBI.L #imm,Dx 1(0/0) — — — — — — —

SUBQ.L #imm,<ea> 1(0/0) 3(1/1) 3(1/1) 3(1/1) 3(1/1) 4(1/1) 3(1/1) —

SUBX.L Dy,Dx 1(0/0) — — — — — — —

Table 20-17. Two Operand Instruction Execution Times (continued)

Opcode <EA>

Effective Address

Rn (An) (An)+ -(An)
(d16,An)
(d16,PC)

(d8,An,Xn*SF)
(d8,PC,Xn*SF)

xxx.wl #xxx
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20.4.4.5 Miscellaneous Instruction Execution Times

Table 20-18. Miscellaneous Instruction Execution Times

Opcode <EA>
Effective Address

Rn (An) (An)+ -(An) (d16,An) (d8,An,Xn*SF) xxx.wl #xxx

LINK.W Ay,#imm 2(0/1) — — — — — — —

MOV3Q.L #imm,<ea> 1(0/0) 1(0/1) 1(0/1) 1(0/1) 1(0/1) 2(0/1) 1(0/1) —

MOVE.L Ay,USP 3(0/0) — — — — — — —

MOVE.L USP,Ax 3(0/0) — — — — — — —

MOVE.W CCR,Dx 1(0/0) — — — — — — —

MOVE.W <ea>,CCR 1(0/0) — — — — — — 1(0/0)

MOVE.W SR,Dx 1(0/0) — — — — — — —

MOVE.W <ea>,SR 7(0/0) — — — — — — 7(0/0) 2

MOVEC Ry,Rc 9(0/1) — — — — — — —

MOVEM.L <ea>,and 
list

— 1+n(n/0) — — 1+n(n/0) — — —

MOVEM.L and 
list,<ea>

— 1+n(0/n) — — 1+n(0/n) — — —

MVS <ea>,Dx 1(0/0) 2(1/0) 2(1/0) 2(1/0) 2(1/0) 3(1/0) 2(1/0) 1(0/0)

MVZ <ea>,Dx 1(0/0) 2(1/0) 2(1/0) 2(1/0) 2(1/0) 3(1/0) 2(1/0) 1(0/0)

NOP 3(0/0) — — — — — — —

PEA <ea> — 2(0/1) — — 2(0/1)4 3(0/1)5 2(0/1) —

PULSE 1(0/0) — — — — — — —

STLDSR #imm — — — — — — — 5(0/1)

STOP #imm — — — — — — — 3(0/0)3

TRAP #imm — — — — — — — 12(1/2)

TPF 1(0/0) — — — — — — —

TPF.W 1(0/0) — — — — — — —

TPF.L 1(0/0) — — — — — — —

UNLK Ax 2(1/0) — — — — — — —

WDDATA <ea> — 3(1/0) 3(1/0) 3(1/0) 3(1/0) 4(1/0) 3(1/0) —

WDEBUG <ea> — 5(2/0) — — 5(2/0) — — —

1The n is the number of registers moved by the MOVEM opcode.
2If a MOVE.W #imm,SR instruction is executed and imm[13] equals 1, the execution time is 1(0/0).
3The execution time for STOP is the time required until the processor begins sampling continuously for interrupts.
4PEA execution times are the same for (d16,PC).
5PEA execution times are the same for (d8,PC,Xn*SF).
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20.4.4.6 Branch Instruction Execution Times

Table 20-19. General Branch Instruction Execution Times

Opcode <EA>

Effective Address

Rn (An) (An)+ -(An)
(d16,An)
(d16,PC)

(d8,An,Xi*SF)
(d8,PC,Xi*SF)

xxx.wl #xxx

BRA — — — — 2(0/1) — — —

BSR — — — — 3(0/1) — — —

JMP <ea> — 3(0/0) — — 3(0/0) 4(0/0) 3(0/0) —

JSR <ea> — 3(0/1) — — 3(0/1) 4(0/1) 3(0/1) —

RTE — — 7(2/0) — — — — —

RTS — — 5(1/0) — — — — —

Table 20-20. Bcc Instruction Execution Times

Opcode
Forward
Taken

Forward
Not Taken

Backward
Taken

Backward
Not Taken

Bcc 3(0/0) 1(0/0) 2(0/0) 3(0/0) 
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Chapter 21  Version 1 ColdFire Debug (CF1_DEBUG)

21.1 Introduction
This chapter describes the capabilities defined by the Version 1 ColdFire debug architecture. The Version 1 
ColdFire core supports BDM functionality using the HCS08’s single-pin interface. The traditional 3-pin 
full-duplex ColdFire BDM serial communication protocol based on 17-bit data packets is replaced with 
the HCS08 debug protocol where all communications are based on an 8-bit data packet using a single 
package pin (BKGD).

The following sections in this chapter provide details on the BKGD pin, the background debug serial 
interface controller (BDC), a standard 6-pin BDM connector, the BDM command set as well as real-time 
debug capabilities. The V1 definition supports revision B+ (DEBUG_B+) of the ColdFire debug 
architecture.

A simplified block diagram of the V1 core including the processor and debug module is shown in 
Figure 21-1.
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Figure 21-1. Simplified Version 1 ColdFire Core Block Diagram

21.1.1 Overview

Debug support is divided into these areas:

• Background debug mode (BDM)—Provides low-level debugging in the ColdFire processor core. 
In BDM, the processor core is halted and a variety of commands can be sent to the processor to 
access memory, registers, and peripherals. The external emulator uses a one-pin serial 
communication protocol. See Section 21.4.1, “Background Debug Mode (BDM)”.

• Real-time debug support—Use of the full BDM command set requires the processor to be halted, 
which many real-time embedded applications cannot support. The core includes a variety of 
internal breakpoint registers which can be configured to trigger and generate a special interrupt. 
The resulting debug interrupt lets real-time systems execute a unique service routine that can 
quickly save the contents of key registers and variables and return the system to normal operation. 
The external development system can then access the saved data, because the hardware supports 
concurrent operation of the processor and BDM-initiated memory commands. In addition, the 
option is provided to allow interrupts to occur. See Section 21.4.2, “Real-Time Debug Support”.

Central Processing Unit

Debug
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RESET
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IFP — Instruction fetch pipeline
OEP — Operand execution pipeline
BDC — Background debug controller
CFxBDM— ColdFire background debug module
PST/DDATA— Processor status/debug data
RTD — Real-time debug

(CF1Cpu)

(CF1Dbg)

attb
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There are two fields in debug registers which provide revision information: the hardware revision level in 
CSR and the 1-pin debug hardware revision level in CSR2. Table 21-1 summarizes the various debug 
revisions.

21.1.2 Features

The Version 1 ColdFire debug definition supports the following features:

• Classic ColdFire DEBUG_B+ functionality mapped into the single-pin BDM interface

• Real time debug support, with 6 hardware breakpoints (4 PC, 1 address pair and 1 data) that can be 
configured into a 1- or 2-level trigger with a programmable response (processor halt or interrupt)

• Debug resources are accessible via single-pin BDM interface or the privileged WDEBUG 
instruction from the core

21.1.3 Modes of Operations

V1 ColdFire devices typically implement a number of modes of operation, including run, wait, and stop 
modes. Additionally, the operation of the core’s debug module is highly dependent on a number of chip 
configurations which determine its operating state.

When operating in secure mode, as defined by a 2-bit field in the flash memory examined at reset, BDM 
access to debug resources is extremely restricted. It is possible to tell that the device has been secured, and 
to clear security, which involves mass erasing the on-chip flash memory. No other debug access is allowed. 
Secure mode can be used in conjunction with each of the wait and stop low-power modes.

If the BDM interface is not enabled, access to the debug resources is limited in the same manner as a secure 
device.

If the device is not secure and the BDM interface is enabled (XCSR[ENBDM] is set), the device is 
operating in debug mode and additional resources are available via the BDM interface. In this mode, the 
mode of the processor (running, stopped, or halted) determines which BDM commands may be used.

Table 21-1. Debug Revision Summary

Revision CSR[HRL] CSR2[D1HRL]1

1 CSR2 is only available in Version 1 ColdFire devices.

Enhancements

A 0000 N/A Initial ColdFire debug definition

B 0001 N/A BDM command execution does not affect hardware breakpoint logic
Added BDM address attribute register (BAAR)
BKPT configurable interrupt (CSR[BKD])
Level 1 and level 2 triggers on OR condition, in addition to AND
SYNC_PC command to display the processor’s current PC

B+ 1001 N/A Added 3 PC breakpoint registers PBR1–3

CF1_B+ 1001 0001 Converted to HCS08 1-pin BDM serial interface
Added PST compression and on-chip PST/DDATA buffer for program trace

CF1_B+_
no_PSTB

1001 0010 Standard CF1 Debug_B+ without the PST trace buffer
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Debug mode functions are managed through the background debug controller (BDC) in the Version 1 
ColdFire core. The BDC provides the means for analyzing MCU operation during software development.

BDM commands can be classified into three types as shown in Table 21-2.

For more information on these three BDM command classifications, see Section 21.4.1.5, “BDM 
Command Set Summary”.

The core’s halt mode is entered in a number of ways: 

• The BKGD pin is low during POR

• The BKGD pin is low immediately after a BDM-initiated force reset (see Section 21.3.3, 
“Configuration/Status Register 2 (CSR2)” for details)

• A background debug force reset occurs (CSR2[BDFR] is set) and CSR2[BFHBR] is set

• A computer operating properly reset occurs and CSR2[COPHR] is set

• An illegal operand reset occurs and CSR2[IOPHR] is set

• An illegal address reset occurs and CSR2[IADHR] is set

• A BACKGROUND command is received through the BKGD pin. If necessary, this wakes the 
device from STOP/WAIT modes.

• A properly-enabled (XCSR[ENBDM] is set) HALT instruction is executed

• Encountering a BDM breakpoint and the trigger response is programmed to generate a halt

While in halt mode, the core waits for serial background commands rather than executing instructions from 
the application program.

Table 21-2. BDM Command Types

Command 
Type

Flash
Secure?

BDM?
Core

Status
Command Set

Always
available

Secure or 
Unsecure

Enabled or 
Disabled

—  • Read/write access to XCSR[31–24], CSR2[31–24], 
CSR3[31–24]

Non-intrusive Unsecure Enabled Run, Halt  • Memory access
 • Memory access with status
 • Debug register access
 • BACKGROUND

Active
background

Unsecure Enabled Halt  • Read or write CPU registers (also available in stop mode)
 • Single-step the application
 • Exit halt mode to return to the application program (GO)
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Figure 21-2. Debug Modes State Transition Diagram

Figure 21-2 contains a simplified view of the V1 ColdFire debug mode states. The XCSR[CLKSW] bit 
controls the BDC clock source. When CLKSW is set, the BDC serial clock is half the CPU clock. When 
CLKSW is cleared, the BDC serial clock is supplied from an alternate clock source.

The ENBDM bit determines if the device can be placed in halt mode, if the core and BDC serial clocks 
continue to run in STOP modes, and if the regulator can be placed into standby mode. Again, if booting to 
halt mode, XCSR[ENBDM, CLKSW] are automatically set.

If ENBDM is cleared, the ColdFire core treats the HALT instruction as an illegal instruction and generates 
a reset (if CPUCR[IRD] is cleared) or an exception (if CPUCR[IRD] is set) if execution is attempted.

If XCSR[ENBDM] is set, the device can be restarted from STOP/WAIT via the BDM interface.

21.2 External Signal Descriptions
Table 21-3 describes the debug module’s 1-pin external signal (BKGD). A standard 6-pin debug connector 
is shown in Section 21.4.3.

Table 21-3. Debug Module Signals

Signal Description

Background Debug 
(BKGD)

Single-wire background debug interface pin. The primary function of this pin is for bidirectional serial 
communication of background debug mode commands and data. During reset, this pin selects 
between starting in active background (halt) mode or starting the application program. This pin also 
requests a timed sync response pulse to allow a host development tool to determine the correct clock 
frequency for background debug serial communications.

Debug
Halt

ENBDM=1

Normal
Operation
ENBDM=0

Normal
Operation
ENBDM=1

Any
State

CPU clock/2 is used
as the BDM clock

CLKSW=1

Return to Halt via
BACKGROUND command,

HALT instruction, or
BDM breakpoint trigger

BDM GO
command

clear ENBDM
via BDM

Set
ENBDM

Debug not enabled
BDM and CPU clocks are not

enabled in STOP modes

Debug is enabled
CPU clocks continue
during STOP modes

CLKSW=0

POR with BKGD=1 or

BDFR=1 and BFHBR=0 or
Illegal op reset and CSR2[IOPHR]=0 or

POR with BKGD = 0 or
BDFR and BFHBR = 1 or

Illegal op reset and CSR2[IOPHR] = 1 or
Illegal address reset and CSR2[IADHR] = 1

Illegal address reset and CSR2[IADHR]=0 or
RCSR[ASR]=1
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21.3 Memory Map/Register Definition
In addition to the BDM commands that provide access to the processor’s registers and the memory 
subsystem, the debug module contains a number of registers. Most of these registers are also accessible 
(write-only) from the processor’s supervisor programming model by executing the WDEBUG instruction. 
Thus, the breakpoint hardware in the debug module can be read (certain registers) or written by the 
external development system using the serial debug interface or written by the operating system running 
on the processor core. Software is responsible for guaranteeing that accesses to these resources are 
serialized and logically consistent. The hardware provides a locking mechanism in the CSR to allow the 
external development system to disable any attempted writes by the processor to the breakpoint registers 
(setting CSR[IPW]). BDM commands must not be issued during the processor’s execution of the 
WDEBUG instruction to configure debug module registers or the resulting behavior is undefined.

These registers, shown in Table 21-4, are treated as 32-bit quantities regardless of the number of 
implemented bits and unimplemented bits are reserved and must be cleared. These registers are also 
accessed through the BDM port by the commands, WRITE_DREG and READ_DREG, described in 
Section 21.4.1.5. These commands contain a 5-bit field, DRc, that specifies the register, as shown in 
Table 21-4.

NOTE
Accessing unspecified BDM registers (either through the WDEBUG 
instruction or BDM commands) has “undefined” behavior.
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NOTE
Debug control registers can be written by the external development system 
or the CPU through the WDEBUG instruction. These control registers are 
write-only from the programming model and they can be written through the 
BDM port using the WRITE_DREG command. In addition, the four 
configuration/status registers (CSR, XCSR and CSR2) can be read through 
the BDM port using the READ_DREG command.

The ColdFire debug architecture supports a number of hardware breakpoint registers that can be 
configured into single- or double-level triggers based on the PC or operand address ranges with an optional 
inclusion of specific data values. The triggers can be configured to halt the processor or generate a debug 
interrupt exception.

Table 21-4. Debug Module Memory Map

DRc Register Name
Width
(bits)

Access Reset Value
Section/

Page

0x00 Configuration/status register (CSR) 32 R/W (BDM),
W (CPU)

0x0090_0000 21.3.1/21-294

0x01 Extended Configuration/Status Register (XCSR) 32 R/W1 (BDM),
W (CPU)

1 The most significant byte of the XCSR and CSR2 registers supports special control functions and are writeable via BDM 
using the WRITE_XCSR_BYTE and WRITE_CSR2_BYTE commands. They can be read from BDM using the 
READ_XCSR_BYTE and READ_CSR2_BYTE commands. These two registers, along with the CSR, can also be 
referenced as 32-bit quantities using the BDM READ_DREG and WRITE_DREG commands.

0x0000_0000 21.3.2/21-296

0x02 Configuration/Status Register 2 (CSR2) 32 R/W1 (BDM),
W (CPU)

See Section 21.3.3/21-299

0x05 BDM address attribute register (BAAR) 322

2 Each debug register is accessed as a 32-bit value. Undefined fields are reserved and must be cleared.

W 0x0000_0005 21.3.4/21-304

0x06 Address attribute trigger register (AATR) 322 W 0x0000_0005 21.3.5/21-304

0x07 Trigger definition register (TDR) 32 W 0x0000_0000 21.3.6/21-306

0x08 PC breakpoint register 0 (PBR0) 32 W Undefined,
Unaffected

21.3.7/21-309

0x09 PC breakpoint mask register (PBMR) 32 W Undefined,
Unaffected

21.3.7/21-309

0x0C Address breakpoint high register (ABHR) 32 W Undefined,
Unaffected

21.3.8/21-310

0x0D Address breakpoint low register (ABLR) 32 W 0x0000_0000 21.3.8/21-310

0x0E Data breakpoint register (DBR) 32 W 0x0000_0000 21.3.9/21-311

0x0F Data breakpoint mask register (DBMR) 32 W 0x0000_0000 21.3.9/21-311

0x18 PC breakpoint register 1 (PBR1) 32 W PBR1[0] = 0 21.3.7/21-309

0x1A PC breakpoint register 2 (PBR2) 32 W PBR2[0] = 0 21.3.7/21-309

0x1B PC breakpoint register 3 (PBR3) 32 W PBR3[0] = 0 21.3.7/21-309
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The core includes four PC breakpoint triggers and a set of operand address breakpoint triggers with two 
independent address registers (to allow specification of a range) and an optional data breakpoint with 
masking capabilities. Core breakpoint triggers are accessible through the serial BDM interface or written 
through the supervisor programming model using the WDEBUG instruction.

21.3.1 Configuration/Status Register (CSR)

CSR defines the debug configuration for the processor and memory subsystem and contains status 
information from the breakpoint logic. CSR is accessible from the programming model using the 
WDEBUG instruction and through the BDM port using the READ_DREG and WRITE_DREG 
commands.

DRc[4:0]: 0x00 (CSR)
Access: Supervisor write-only

BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R BSTAT FOF TRG HALT BKPT HRL 0 BKD 0 IPW

W

Reset 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 TRC 0 DDC UHE BTB 0 NPL IPI SSM 0 0 FID DDH

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-3. Configuration/Status Register (CSR)

Table 21-5. CSR Field Descriptions

Field Description

31–28
BSTAT

Breakpoint status. Provides read-only status (from the BDM port only) information concerning hardware 
breakpoints. BSTAT is cleared by a TDR write or by a CSR read when a level-2 breakpoint is triggered or a level-1 
breakpoint is triggered and the level-2 breakpoint is disabled.
0000 No breakpoints enabled
0001 Waiting for level-1 breakpoint
0010 Level-1 breakpoint triggered
0101 Waiting for level-2 breakpoint
0110 Level-2 breakpoint triggered

27
FOF

Fault-on-fault. Indicates a catastrophic halt occurred and forced entry into BDM. FOF is cleared by reset or when 
CSR is read (from the BDM port only).

26
TRG

Hardware breakpoint trigger. Indicates a hardware breakpoint halted the processor core and forced entry into 
BDM. Reset, the debug GO command, or reading CSR (from the BDM port only) clears TRG.

25
HALT

Processor halt. Indicates the processor executed a HALT and forced entry into BDM. Reset, the debug GO 
command, or reading CSR (from the BDM port only) clears HALT.
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24
BKPT

Breakpoint assert. Indicates the BKPT input was asserted or a BDM BACKGROUND command received, forcing 
the processor into a BDM halt. Reset, the debug GO command, or reading CSR (from the BDM port only) clears 
BKPT. 

23–20
HRL

Hardware revision level. Indicates, from the BDM port only, the level of debug module functionality. An emulator 
can use this information to identify the level of functionality supported.
0000 Revision A 
0001 Revision B
0010 Revision C
0011 Revision D
1001 Revision B+ (The value used for this device)
1011 Revision D+

19 Reserved, must be cleared.

18
BKD

Breakpoint disable. Disables the BACKGROUND command functionality, and allows the execution of the 
BACKGROUND command to generate a debug interrupt.
0 Normal operation
1 The receipt of a BDM BACKGROUND command signals a debug interrupt to the ColdFire core. The processor 
makes this interrupt request pending until the next sample point occurs, when the exception is initiated. In the 
ColdFire architecture, the interrupt sample point occurs once per instruction. There is no support for nesting 
debug interrupts.

17 Reserved, must be cleared.

16
IPW

Inhibit processor writes. Inhibits processor-initiated writes to the debug module’s programming model registers. 
IPW can be modified only by commands from the BDM interface.

15 Reserved, must be cleared.

14
TRC

Force emulation mode on trace exception.
0 Processor enters supervisor mode.
1 Processor enters emulator mode when a trace exception occurs.

13 Reserved, must be cleared.

12–11
DDC

Debug data control. Controls peripheral bus operand data capture for DDATA, which displays the number of bytes 
defined by the operand reference size (a marker) before the actual data; byte displays 8 bits, word displays 16 
bits, and long displays 32 bits (one nibble at a time across multiple PSTCLK clock cycles). A non-zero value 
enables partial data trace capabilities.
00 No operand data is displayed.
01 Capture all write data.
10 Capture all read data.
11 Capture all read and write data.

10
UHE

User halt enable. Selects the CPU privilege level required to execute the HALT instruction. The core must be 
operating with XCSR[ENBDM] set to execute any HALT instruction, else the instruction is treated as an illegal 
opcode.
0 HALT is a supervisor-only instruction.
1 HALT is a supervisor/user instruction.

9–8
BTB

Branch target bytes. Defines the number of bytes of branch target address DDATA displays.
00 No target address capture
01 Lower 2 bytes of the target address
1x Lower 3 bytes of the target address

7 Reserved, must be cleared.

Table 21-5. CSR Field Descriptions (continued)

Field Description
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21.3.2 Extended Configuration/Status Register (XCSR)

The 32-bit XCSR is partitioned into two sections: the upper byte contains status and command bits always 
accessible to the BDM interface, even if debug mode is disabled. This status byte is also known as 
XCSR_SB. The lower 24 bits contain fields related to the generation of automatic SYNC_PC commands, 
which can be used to periodically capture and display the current program counter (PC) in the PST trace 
buffer (not implemented in this device).

There are multiple ways to reference the XCSR. They are summarized in Table 21-6.

6
NPL

Non-pipelined mode. Determines if the core operates in pipelined mode.
0 Pipelined mode
1 Non-pipelined mode. The processor effectively executes one instruction at a time with no overlap. This typically 
adds five cycles to the execution time of each instruction. Given an average execution latency of ~2 cycles per 
instruction, throughput in non-pipeline mode would be ~7 cycles per instruction, approximately 25% - 33% of 
pipelined performance.

Regardless of the NPL state, a triggered PC breakpoint is always reported before the triggering instruction 
executes. In normal pipeline operation, the occurrence of an address and/or data breakpoint trigger is imprecise. 
In non-pipeline mode, these triggers are always reported before the next instruction begins execution and trigger 
reporting can be considered precise.

5
IPI

Ignore pending interrupts when in single-step mode.
0  Core services any pending interrupt requests signalled while in single-step mode.
1  Core ignores any pending interrupt requests signalled while in single-step mode.

4
SSM

Single-step mode enable.
0 Normal mode.
1 Single-step mode. The processor halts after execution of each instruction. While halted, any BDM command 
can be executed. On receipt of the GO command, the processor executes the next instruction and halts again. 
This process continues until SSM is cleared.

3–2 Reserved, must be cleared.

1
FID

Force ipg_debug. The core generates this output to the device, signaling it is in debug mode.
0 Do not force the assertion of ipg_debug
1 Force the assertion of ipg_debug

0
DDH

Disable ipg_debug due to a halt condition. The core generates an output to the other modules in the device, 
signaling it is in debug mode. By default, this output signal is asserted when the core halts. 
0 Assert ipg_debug if the core is halted
1 Negate ipg_debug due to the core being halted

Table 21-6. XCSR Reference Summary

Method Reference Details

READ_XCSR_BYTE Reads XCSR[31–24] from the BDM interface. Available in all modes.

WRITE_XCSR_BYTE Writes XCSR[31–24] from the BDM interface. Available in all modes.

READ_DREG Reads XCSR[31–0] from the BDM interface. Classified as a non-intrusive BDM command.

Table 21-5. CSR Field Descriptions (continued)

Field Description
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WRITE_DREG Writes XCSR[31–0] from the BDM interface. Classified as a non-intrusive BDM command.

WDEBUG instruction Writes XCSR[23–0] during the core’s execution of WDEBUG instruction. This instruction is a 
privileged supervisor-mode instruction.

DRc: 0x01 (XCSR)
Access: Supervisor write-only

BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R CPU
HALT

CPU
STOP

CSTAT CLK
SW

SEC EN
BDM

0 0 0 0 0 0 0 0

W ESEQC ERASE

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 APCSC APC
ENB

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-4. Extended Configuration/Status Register (XCSR)

Table 21-7. XCSR Field Descriptions

Field Description

31
CPUHALT

Indicates that the CPU is in the halt state. The CPU state may be running, stopped, or halted, which is determined 
by the CPUHALT and CPUSTOP bits as shown below.

30
CPUSTOP

Indicates that the CPU is in the stop state. The CPU state may be running, stopped, or halted, which is determined 
by the CPUHALT and CPUSTOP bits as shown in the CPUHALT bit description.

Table 21-6. XCSR Reference Summary

Method Reference Details

XCSR
[CPUHALT]

XCSR
[CPUSTOP]

CPU State

0 0 Running

0 1 Stopped

1 0 Halted
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29–27
CSTAT (R)

ESEQC (W)

During reads, indicates the BDM command status.
000Command done, no errors
001Command done, data invalid
01xCommand done, illegal
1xxCommand busy, overrun

If an overrun is detected (CSTAT = 1xx), the following sequence is suggested to clear the source of the error:
1. Issue a SYNC command to reset the BDC channel.
2. The host issues a BDM NOP command.
3. The host checks the channel status using a READ_XCSR_BYTE command.
4. If XCSR[CSTAT] = 000

then status is okay; proceed
else

Halt the CPU with a BDM BACKGROUND command
Repeat steps 1,2,3
If XCSR[CSTAT]  000, then reset device

During writes, the ESEQC field is used for the erase sequence control during flash programming. ERASE must 
also be set for this bit to have an effect.
000User mass erase
ElseReserved
Note: See the Memory chapter for a detailed description of the algorithm for clearing security.

26
CLKSW

Select source for serial BDC communication clock.
0 Alternate, asynchronous BDC clock, typically 10 MHz
1 CPU clock divided by 2

The initial state of the XCSR[CLKSW] bit is loaded by the hardware in response to certain reset events and the 
state of the BKGD pin as described in Figure 21-2.

On MMA955xL, the BDC clock is equal to the CPU clock. This is also equal to the synchronous bus clock rate. 
Therefore setting CLKSW to one has the effect of halving the BDC clock rate.

25
SEC (R)

ERASE (W)

The read value of this bit typically defines the status of the flash security field.
0 Flash security is disabled
1 Flash security is enabled

In addition, the SEC bit is context-sensitive during reads. After a mass-erase sequence has been initiated by 
BDM, it acts as a flash busy flag. When the erase operation is complete and the bit is cleared, it returns to reflect 
the status of the chip security.
0 Flash is not busy performing a BDM mass-erase sequence
1 Flash is busy performing a BDM mass-erase sequence

During writes, this bit qualifies XCSR[ESEQC] for the write modes shown in the ESEQC field description.
0 Do not perform a mass-erase of the flash.
1 Perform a mass-erase of the flash, using the sequence specified in the XCSR[ESEQC] field.

24
ENBDM

Enable BDM.
0 BDM mode is disabled
1 Active background mode is enabled (assuming the flash is not secure)

23–3 Reserved for future use by the debug module, must be cleared.

Table 21-7. XCSR Field Descriptions (continued)

Field Description
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21.3.3 Configuration/Status Register 2 (CSR2)

The 32-bit CSR2 is partitioned into two sections. The upper byte contains status and configuration bits 
always accessible to the BDM interface, even if debug mode is disabled. The lower 24 bits contain fields 
related to the configuration of the PST trace buffer (PSTB) which is not implemented in this device.

There are multiple ways to reference CSR2. They are summarized in Table 21-8.

2–1
APCSC

Automatic PC synchronization control. Determines the periodic interval of PC address captures, if 
XCSR[APCENB] is set. When the selected interval is reached, a SYNC_PC command is sent to the ColdFire 
CPU. For more information on the SYNC_PC operation, see the APCENB description.

The chosen frequency depends on CSR2[APCDIV16] as shown in the equation and table below:

Eqn. 21-1

0
APCENB

Automatic PC synchronization enable. Enables the periodic output of the PC which can be used for PST/DDATA 
trace synchronization.
As described in XCSR[APCSC], when the enabled periodic timer expires, a SYNC_PC command is sent to the 
ColdFire CPU which generates a forced instruction fetch of the next instruction. The PST/DDATA module captures 
the target address as defined by CSR[9] (two bytes if CSR[9] is cleared, three bytes if CSR[9] is set). This 
produces a PST sequence of the PST marker indicating a 2- or 3-byte address, followed by the captured 
instruction address.
0 Automatic PC synchronization disabled
1 Automatic PC synchronization enabled

Table 21-8. CSR2 Reference Summary

Method Reference Details

READ_CSR2_BYTE Reads CSR2[31–24] from the BDM interface. Available in all modes.

WRITE_CSR2_BYTE Writes CSR2[31–24] from the BDM interface. Available in all modes.

Table 21-7. XCSR Field Descriptions (continued)

Field Description

PC address capture period 2
APCSC 1+ 

1024

16
APCDIV16

----------------------------------------------------------=

XCSR
[APCENB]

CSR2
[APCDIV16]

XCSR
[APCSC]

SYNC_PC Interval

1 0 00 2048 cycles

1 0 01 4096 cycles

1 0 10 8192 cycles

1 0 11 16384 cycles

1 1 00 128 cycles

1 1 01 256 cycles

1 1 10 512 cycles

1 1 11 1024 cycles
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READ_DREG Reads CSR2[31–0] from the BDM interface. Classified as a non-intrusive BDM command.

WRITE_DREG Writes CSR2[31–0] from the BDM interface. Classified as a non-intrusive BDM command.

WDEBUG Instruction Writes CSR2[23–0] during the core’s execution of WDEBUG instruction. This instruction is a 
privileged supervisor-mode instruction.

DRc: 0x02 (CSR2) Access: Supervisor read-only
BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R PSTBP 0 COP
HR

IOP
HR

IAD
HR

0
BFHBR

0 PSTBH PSTBST 0 D1HRL

W BDFR

Power-on
Reset

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Other
Reset

0 0 u u u 0 u 0 0 0 0 0 0 0 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R PSTBWA 0
APC

DIV16

0

PSTBRM PSTBSSW PSTB
R

Reset Unaffected and Undefined 0 0 0 0 0 0 0 0

Figure 21-5. Configuration/Status Register 2 (CSR2)

Table 21-8. CSR2 Reference Summary (continued)

Method Reference Details
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Table 21-9. CSR2 Field Descriptions

Field Description

31
PSTBP

PST buffer stop. Signals if a PST buffer stop condition has been reached.
0 A PST trace buffer stop condition has not been reached
1 A PST trace buffer stop condition has been reached

30 Reserved, must be cleared.

29
COPHR

Computer operating properly halt after reset. Determines operation of the device after a COP reset. This bit is 
cleared after a power-on reset and is unaffected by any other reset.
0 After a computer-operating-properly reset, the device immediately enters normal operation mode.
1 A computer-operating-properly reset immediately halts the device (as if the BKGD pin was held low after a 
power-on reset).
Note: This bit may only be changed if XCSR[ENBDM] is set and the flash is unsecure.
Note: MMA955xL does not include COP functionality. Therefore the COPHR bit will always be inactive.

28
IOPHR

Illegal operation halt after reset. Determines operation of the device after an illegal operation reset. This bit is 
cleared after a power-on reset and is unaffected by any other reset.
0 After the device has an illegal operation reset, the device immediately enters normal operation mode.
1 An illegal operation reset immediately halts the device (as if the BKGD pin was held low after a power-on reset).
Note: This bit may only be changed if XCSR[ENBDM] is set and the flash is unsecure.

27
IADHR

Illegal address halt after reset. Determines operation of the device after an illegal address reset. This bit is cleared 
after a power-on reset and is unaffected by any other reset.
0 After the device has an illegal address reset, the device immediately enters normal operation mode.
1 An illegal address reset immediately halts the device (as if the BKGD pin was held low after a power-on reset).
Note: This bit may only be changed if XCSR[ENBDM] is set and the flash is unsecure.

26 Reserved, must be cleared.

25
BFHBR

BDM force halt on BDM reset. Determines operation of the device after a BDM reset. This bit is cleared after a 
power-on reset and is unaffected by any other reset.
0 The device enters normal operation mode following a BDM reset.
1 The device enters in halt mode following a BDM reset, as if the BKGD pin was held low after a power-on-reset 
or standard BDM-initiated reset.
Note: This bit can only change state if XCSR[ENBDM] = 1 and the flash is unsecure.

24
BDFR

Background debug force reset. Forces a BDM reset to the device. This bit always reads as 0 after the reset has 
been initiated.
0 No reset initiated.
1 Force a BDM reset.

23 Reserved, must be cleared.

22–21
PSTBST

PST trace buffer state. Indicates the current state of the PST trace buffer recording.
00 PSTB disabled
01 PSTB enabled and waiting for the start condition
10 PSTB enabled, recording and waiting for the stop condition
11 PSTB enabled, completed recording after the stop condition was reached

20 Reserved, must be cleared.

19–16
D1HRL

Debug 1-pin hardware revision level. Indicates the hardware revision level of the 1-pin debug module implemented 
in the ColdFire core. For this device, this field is 0x1.
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15–8
PSTBWA

PST trace buffer write address. Indicates the current write address of the PST trace buffer. The most-significant-bit 
of this field is sticky; if set, it remains set until a PST/DDATA reset event occurs. As the ColdFire core inserts PST 
and DDATA packets into the trace buffer, this field is incremented. The value of the write address defines the next 
location in the PST trace buffer to be loaded. In other words, the contents of PSTB[PSTBWA-1] is the last valid 
entry in the trace buffer.
The msb of this field can be used to determine if the entire PST trace buffer has been loaded with valid data.

The PSTBWA is unaffected when a buffer stop condition has been reached, the buffer is disabled, or a system 
reset occurs. This allows the contents of the PST trace buffer to be retrieved after these events to assist in debug.

7
PSTBR

PST trace buffer reset. Generates a reset of the PST trace buffer logic, which clears PSTBWA and PSTBST. The 
same resources are reset when a disabled trace buffer becomes enabled. These reset events also clear any 
accumulation of PSTs. This bit always reads as a zero.
0 Do not force a PST trace buffer reset
1 Force a PST trace buffer reset

6
APCDIV16

Automatic PC synchronization divide cycle counts by 16. This bit divides the cycle counts for automatic SYNC_PC 
command insertion by 16. See the APCSC and APCENB field descriptions.

5 Reserved, must be cleared.

4–3
PSTBRM

PST trace buffer recording mode. Defines the trace buffer recording mode. The start and stop recording conditions 
are defined by the PSTBSS field.
00 Normal recording mode
01
10
11

2–0
PSTBSS

PST trace buffer start/stop definition. Specifies the start and stop conditions for PST trace buffer recording. In 
certain cases, the start and stop conditions are defined by the breakpoint registers. The remaining breakpoint 
registers are available for trigger configurations. 

Table 21-9. CSR2 Field Descriptions (continued)

Field Description

PSTBWA[7]
PSTB Valid Data Locations

(Oldest to Newest)

0 0, 1, ... PSTBWA-1

1  PSTBWA, PSTBWA+1,..., 0, 1, PSTBWA-1 

PSTBSS Start Condition Stop Condition

000 Trace buffer disabled, no recording

001 Unconditional recording

010
ABxR{& DBR/DBMR}

PBR0/PBMR

011 PBR1

100
PBR0/PBMR

ABxR{& DBR/DBMR}

101 PBR1

110
PBR1

ABxR{& DBR/DBMR}

111 PBR0/PBMR
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Table 21-10. CSR3 Reference Summary

Method Reference Details

READ_CSR3_BYTE Reads CSR3[31–24] from the BDM interface. Available in all modes.

WRITE_CSR3_BYTE Writes CSR3[31–24] from the BDM interface. Available in all modes.

READ_DREG Reads CSR3[31–0] from the BDM interface. Classified as a non-intrusive BDM command.

WRITE_DREG Writes CSR3[31–0] from the BDM interface. Classified as a non-intrusive BDM command.

WDEBUG Instruction No operation during the core’s execution of a WDEBUG instruction

DRc: 0x03 (CSR3) Access: Supervisor write-only
BDM read/write

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R 0 BFC
DIV8

BFCDIV
0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-6. Configuration/Status Register 3 (CSR3)

Table 21-11. CSR3 Field Descriptions

Field Description

31 Reserved, must be cleared.

30
BFCDIV8

BDM flash clock divide by 8.
0 Input to the flash clock divider is the bus clock
1 Input to the flash clock divider is the bus clock divided by 8

29–24
BFCDIV

BDM flash clock divider. The BFCDIV8 and BFCDIV fields specify the frequency of the internal flash clock when 
performing a mass erase operation initiated by setting XCSR[ERASE]. These fields must be loaded with the 
appropriate values prior to the setting of XCSR[ERASE] to initiate a mass erase operation in the flash memory.

This field divides the bus clock (or the bus clock divided by 8 if BFCDIV8 is set) by the value defined by the 
BFCDIV plus one. The resulting frequency of the internal flash clock must fall within the range of 150–200 kHz for 
proper flash operations. Program/erase timing pulses are one cycle of this internal flash clock, which corresponds 
to a range of 5–6.7 s. The automated programming logic uses an integer number of these pulses to complete 
an erase or program operation.

if BFCDIV8 = 0, then fFCLK = fBus ÷ (BFCDIV + 1)
if BFCDIV8 = 1, then fFCLK = fBus ÷ (8 × (BFCDIV + 1)

where fFCLK is the frequency of the flash clock and fBus is the frequency of the bus clock.

23–0 Reserved for future use by the debug module, must be cleared.
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21.3.4 BDM Address Attribute Register (BAAR)

BAAR defines the address space for memory-referencing BDM commands. BAAR[R, SZ] are loaded 
directly from the BDM command, while the lower five bits can be programmed from the external 
development system. BAAR is loaded any time AATR is written and is initialized to a value of 0x05, 
setting supervisor data as the default address space. The upper 24 bits of this register are reserved for future 
use and any attempted write of these bits is ignored.

21.3.5 Address Attribute Trigger Register (AATR)

AATR defines address attributes and a mask to be matched in the trigger. The register value is compared 
with address attribute signals from the processor’s high-speed local bus, as defined by the setting of the 
trigger definition register (TDR). AATR is accessible in supervisor mode as debug control register 0x06 
using the WDEBUG instruction and through the BDM port using the WRITE_DREG command.

DRc: 0x05 (BAAR)
Access: Supervisor write-only

BDM write-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R SZ TT TM

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

Figure 21-7. BDM Address Attribute Register (BAAR)

Table 21-12. BAAR Field Descriptions

Field Description

31–8 Reserved for future use by the debug module, must be cleared.

7
R

Read/Write.
0 Write
1 Read

6–5
SZ

Size.
00 Longword
01 Byte
10 Word
11 Reserved

4–3
TT

Transfer type. See the TT definition in the AATR description, Section 21.3.5.

2–0
TM

Transfer modifier. See the TM definition in the AATR description, Section 21.3.5, “Address Attribute Trigger 
Register (AATR)”.
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DRc:
0x06 (AATR) Access: Supervisor write-only

BDM write-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RM SZM TTM TMM R SZ TT TM

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

Figure 21-8. Address Attribute Trigger Register (AATR)

Table 21-13. AATR Field Descriptions

Field Description

31–16 Reserved, must be cleared.

15
RM

Read/write mask. Masks the R bit in address comparisons.

14–13
SZM

Size mask. Masks the corresponding SZ bit in address comparisons.

12–11
TTM

Transfer type mask. Masks the corresponding TT bit in address comparisons.

10–8
TMM

Transfer modifier mask. Masks the corresponding TM bit in address comparisons.

7
R

Read/write. R is compared with the R/W signal of the processor’s local bus.

6–5
SZ

Size. Compared to the processor’s local bus size signals.
00 Longword
01 Byte
10 Word
11 Reserved

4–3
TT

Transfer type. Compared with the local bus transfer type signals. These bits also define the TT encoding for 
BDM memory commands.
00 Normal processor access
Else Reserved

2–0
TM

Transfer modifier. Compared with the local bus transfer modifier signals, which give supplemental information 
for each transfer type. These bits also define the TM encoding for BDM memory commands (for backward 
compatibility).
000 Reserved
001 User-mode data access
010 User-mode code access
011 Reserved
100 Reserved
101 Supervisor-mode data access
110 Supervisor-mode code access
111 Reserved
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21.3.6 Trigger Definition Register (TDR)

TDR configures the operation of the hardware breakpoint logic that corresponds with the 
ABHR/ABLR/AATR, PBR/PBR1/PBR2/PBR3/PBMR, and DBR/DBMR registers within the debug 
module. TDR controls the actions taken under the defined conditions. Breakpoint logic may be configured 
as one- or two-level trigger. TDR[31–16] defines the second-level trigger, and TDR[15–0] defines the 
first-level trigger.

NOTE
The debug module has no hardware interlocks. To prevent spurious 
breakpoint triggers while the breakpoint registers are being loaded, disable 
TDR (clear TDR[L2EBL,L1EBL]) before defining triggers.

A write to TDR clears the CSR trigger status bits, CSR[BSTAT]. TDR is accessible in supervisor mode as 
debug control register 0x07 using the WDEBUG instruction and through the BDM port using the 
WRITE_DREG command.

DRc: 0x07 (TDR) Access: Supervisor write-only
BDM write-only

Second Level Trigger

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R

W TRC L2EBL L2ED L2DI L2EA L2EPC L2PCI

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

First Level Trigger

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W L2T L1T L1EBL L1ED L1DI L1EA L1EPC L1PCI

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-9. Trigger Definition Register (TDR)

Table 21-14. TDR Field Descriptions

Field Description

31–30
TRC

Trigger response control. Determines how the processor responds to a completed trigger condition. The trigger 
response is displayed on PST.
00 Display on PST only
01 Processor halt
10 Debug interrupt
11 Reserved

29
L2EBL

Enable level 2 breakpoint. Global enable for the breakpoint trigger. 
0 Disables all level 2 breakpoints
1 Enables all level 2 breakpoint triggers
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28–22
L2ED

Enable level 2 data breakpoint. Setting an L2ED bit enables the corresponding data breakpoint condition based on 
the size and placement on the processor’s local data bus. Clearing all ED bits disables data breakpoints. 

21
L2DI

Level 2 data breakpoint invert. Inverts the logical sense of all the data breakpoint comparators. This can develop a 
trigger based on the occurrence of a data value other than the DBR contents.
0 No inversion
1 Invert data breakpoint comparators.

20–18
L2EA

Enable level 2 address breakpoint. Setting an L2EA bit enables the corresponding address breakpoint. Clearing all 
three bits disables the breakpoint.

17
L2EPC

Enable level 2 PC breakpoint.
0 Disable PC breakpoint
1 Enable PC breakpoint

16
L2PCI

Level 2 PC breakpoint invert. 
0 The PC breakpoint is defined within the region defined by PBRn and PBMR.
1 The PC breakpoint is defined outside the region defined by PBRn and PBMR.

15
L2T

Level 2 trigger. Determines the logic operation for the trigger between the PC_condition and the (Address_range and 
Data) condition where the inclusion of a Data_condition is optional. The ColdFire debug architecture supports the 
creation of single or double-level triggers.
0 Level 2 trigger = PC_condition and (Address_range and Data_condition)
1 Level 2 trigger = PC_condition | (Address_range and Data_condition)

Table 21-14. TDR Field Descriptions (continued)

Field Description

TDR Bit Description

28 Data longword. Entire processor’s local data bus. 

27 Lower data word. 

26 Upper data word.

25 Lower lower data byte. Low-order byte of the low-order word.

24 Lower middle data byte. High-order byte of the low-order word.

23 Upper middle data byte. Low-order byte of the high-order word.

22 Upper upper data byte. High-order byte of the high-order word.

TDR Bit Description

20 Address breakpoint inverted. Breakpoint is based outside the 
range between ABLR and ABHR. 

19 Address breakpoint range. The breakpoint is based on the 
inclusive range defined by ABLR and ABHR.

18 Address breakpoint low. The breakpoint is based on the 
address in the ABLR.
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14
L1T

Level 1 trigger. Determines the logic operation for the trigger between the PC_condition and the (Address_range and 
Data) condition where the inclusion of a Data_condition is optional. The ColdFire debug architecture supports the 
creation of single or double-level triggers.
0 Level 1 trigger = PC_condition and (Address_range and Data_condition)
1 Level 1 trigger = PC_condition | (Address_range and Data_condition)

13
L1EBL

Enable level 1 breakpoint. Global enable for the breakpoint trigger. 
0 Disables all level 1 breakpoints
1 Enables all level 1 breakpoint triggers

12–6
L1ED

Enable level 1 data breakpoint. Setting an L1ED bit enables the corresponding data breakpoint condition based on 
the size and placement on the processor’s local data bus. Clearing all L1ED bits disables data breakpoints. 

5
L1DI

Level 1 data breakpoint invert. Inverts the logical sense of all the data breakpoint comparators. This can develop a 
trigger based on the occurrence of a data value other than the DBR contents.
0 No inversion
1 Invert data breakpoint comparators.

4–2
L1EA

Enable level 1 address breakpoint. Setting an L1EA bit enables the corresponding address breakpoint. Clearing all 
three bits disables the address breakpoint.

1
L1EPC

Enable level 1 PC breakpoint.
0 Disable PC breakpoint
1 Enable PC breakpoint

0
L1PCI

Level 1 PC breakpoint invert. 
0 The PC breakpoint is defined within the region defined by PBRn and PBMR.
1 The PC breakpoint is defined outside the region defined by PBRn and PBMR.

Table 21-14. TDR Field Descriptions (continued)

Field Description

TDR Bit Description

12 Data longword. Entire processor’s local data bus. 

11 Lower data word. 

10 Upper data word.

9 Lower lower data byte. Low-order byte of the low-order word.

8 Lower middle data byte. High-order byte of the low-order word.

7 Upper middle data byte. Low-order byte of the high-order word.

6 Upper upper data byte. High-order byte of the high-order word.

TDR Bit Description

4 Enable address breakpoint inverted. Breakpoint is based 
outside the range between ABLR and ABHR. 

3 Enable address breakpoint range. The breakpoint is based on 
the inclusive range defined by ABLR and ABHR.

2 Enable address breakpoint low. The breakpoint is based on the 
address in the ABLR.
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21.3.7 Program Counter Breakpoint/Mask Registers (PBR0–3, PBMR)

The PBRn registers define instruction addresses for use as part of the trigger. These registers’ contents are 
compared with the processor’s program counter register when the appropriate valid bit is set (for PBR1–3) 
and TDR is configured appropriately. PBR0 bits are masked by setting corresponding PBMR bits (PBMR 
has no effect on PBR1–3). Results are compared with the processor’s program counter register, as defined 
in TDR. The PC breakpoint registers, PBR1–3, have no masking associated with them, but do include a 
valid bit. These registers’ contents are compared with the processor’s program counter register when TDR 
is configured appropriately.

The PC breakpoint registers are accessible in supervisor mode using the WDEBUG instruction and 
through the BDM port using the WRITE_DREG command using values shown in Section 21.4.1.4, “BDM 
Command Set Descriptions”.

NOTE
Version 1 ColdFire core devices implement a 24-bit, 16-Mbyte address map. 
When programming these registers with a 32-bit address, the upper byte 
should be zero-filled when referencing the flash, RAM, and RGPIO regions, 
and set to 0xFF when referencing any of the slave peripheral devices.

DRc: 0x08 (PBR0) Access: Supervisor write-only
BDM write-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W Address

Reset – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Figure 21-10. Program Counter Breakpoint Register 0 (PBR0)

Table 21-15. PBR0 Field Descriptions

Field Description

31–0
Address

PC breakpoint address. The address to be compared with the PC as a breakpoint trigger. Because all instruction 
sizes are multiples of 2 bytes, bit 0 of the address should always be zero.

DRc: 0x18 (PBR1)
0x1A (PBR2)
0x1C (PBR3)

Access: Supervisor write-only
BDM write-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W Address V

Reset – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 0

Figure 21-11. Program Counter Breakpoint Register n (PBRn, n = 1,2,3)
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Figure 21-12 shows PBMR. PBMR is accessible in supervisor mode using the WDEBUG instruction and 
via the BDM port using the WRITE_DREG command. PBMR only masks PBR0.

21.3.8 Address Breakpoint Registers (ABLR, ABHR)

The ABLR and ABHR define regions in the processor’s data address space that can be used as part of the 
trigger. These register values are compared with the address for each transfer on the processor’s high-speed 
local bus. The trigger definition register (TDR) identifies the trigger as one of three cases:

• Identical to the value in ABLR

• Inside the range bound by ABLR and ABHR inclusive

• Outside that same range

The address breakpoint registers are accessible in supervisor mode using the WDEBUG instruction and 
through the BDM port using the WRITE_DREG command using values shown in Section 21.4.1.4, “BDM 
Command Set Descriptions”.

NOTE
Version 1 ColdFire core devices implement a 24-bit, 16-Mbyte address map. 
When programming these registers with a 32-bit address, the upper byte 
should be zero-filled when referencing the flash, RAM, and RGPIO regions, 
and set to 0xFF when referencing any of the slave peripheral devices.

Table 21-16. PBRn Field Descriptions

Field Description

31–1
Address

PC breakpoint address. The 31-bit address to be compared with the PC as a breakpoint trigger. 

0
V

Valid bit. This bit must be set for the PC breakpoint to occur at the address specified in the Address field.
0 PBR is disabled.
1 PBR is enabled.

DRc: 0x09 (PBMR) Access: Supervisor write-only
BDM write-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W Mask

Reset – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Figure 21-12. Program Counter Breakpoint Mask Register (PBMR)

Table 21-17. PBMR Field Descriptions

Field Description

31–0
Mask

PC breakpoint mask.
0 The corresponding PBR0 bit is compared to the appropriate PC bit.
1 The corresponding PBR0 bit is ignored.
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21.3.9 Data Breakpoint and Mask Registers (DBR, DBMR)

DBR specifies data patterns used as part of the trigger into debug mode. DBR bits are masked by setting 
corresponding DBMR bits, as defined in TDR.

DBR and DBMR are accessible in supervisor mode using the WDEBUG instruction and through the BDM 
port using the WRITE_DREG commands.

DRc: 0x0C (ABHR)
0x0D (ABLR)

Access: Supervisor write-only
BDM write-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W Address

ABHR
Reset

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

ABLR
Reset

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-13. Address Breakpoint Registers (ABLR, ABHR)

Table 21-18. ABLR Field Description

Field Description

31–0
Address

Low address. Holds the 32-bit address marking the lower bound of the address breakpoint range. Breakpoints for 
specific addresses are programmed into ABLR.

Table 21-19. ABHR Field Description

Field Description

31–0
Address

High address. Holds the 32-bit address marking the upper bound of the address breakpoint range.

DRc[4:0]: 0x0E (DBR)
0x0F (DBMR)

Access: Supervisor write-only
BDM write-only

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

W Data (DBR); Mask (DBMR)

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 21-14. Data Breakpoint and Mask Registers (DBR, DBMR)

Table 21-20. DBR Field Descriptions

Field Description

31–0
Data

Data breakpoint value. Contains the value to be compared with the data value from the processor’s local bus as a 
breakpoint trigger.
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The DBR supports aligned and misaligned references. Table 21-22 shows the relationships between 
processor address, access size, and location within the 32-bit data bus.

21.3.10 Resulting Set of Possible Trigger Combinations

The resulting set of possible breakpoint trigger combinations consists of the following options where || 
denotes logical OR, && denotes logical AND, and {} denotes an optional additional trigger term:

One-level triggers of the form:
if (PC_breakpoint)
if (PC_breakpoint || Address_breakpoint{&& Data_breakpoint})
if (Address_breakpoint {&& Data_breakpoint})

Two-level triggers of the form:
if (PC_breakpoint)

then if (Address_breakpoint{&& Data_breakpoint})

if (Address_breakpoint {&& Data_breakpoint})
then if (PC_breakpoint)

In these examples, PC_breakpoint is the logical summation of the PBR0/PBMR, PBR1, PBR2, and PBR3 
breakpoint registers; Address_breakpoint is a function of ABHR, ABLR, and AATR; Data_breakpoint is 
a function of DBR and DBMR. In all cases, the data breakpoints can be included with an address 
breakpoint to further qualify a trigger event as an option.

The breakpoint registers can also be used to define the start and stop recording conditions for the PST trace 
buffer (not implemented in this device). For information on this functionality, see Section 21.3.3, 
“Configuration/Status Register 2 (CSR2)”.

Table 21-21. DBMR Field Descriptions

Field Description

31–0
Mask

Data breakpoint mask. The 32-bit mask for the data breakpoint trigger. 
0 The corresponding DBR bit is compared to the appropriate bit of the processor’s local data bus
1 The corresponding DBR bit is ignored

Table 21-22. Access Size and Operand Data Location

Address[1–0] Access Size Operand Location

00 Byte D[31–24]

01 Byte D[23–16]

10 Byte D[15–8]

11 Byte D[7–0]

0x Word D[31–16]

1x Word D[15–0]

xx Longword D[31–0]
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21.4 Functional Description

21.4.1 Background Debug Mode (BDM)

This section provides details on the background debug serial interface controller (BDC) and the BDM 
command set.

The BDC provides a single-wire debug interface to the target MCU. As shown in the Version 1 ColdFire 
core block diagram of Figure 21-1, the BDC module interfaces between the single-pin (BKGD) interface 
and the remaining debug modules, including the ColdFire background debug logic and the real-time debug 
hardware. This interface provides a convenient means for programming the on-chip flash and other 
non-volatile memories. The BDC is the primary debug interface for development and allows non-intrusive 
access to memory data and traditional debug features such as run/halt control, read/write of core registers, 
breakpoints, and single instruction step. 

Features of the background debug controller (BDC) include:

• Single dedicated pin for mode selection and background communications

• Special BDC registers not located in system memory map

• SYNC command to determine target communications rate

• Non-intrusive commands for memory access

• Active background (halt) mode commands for core register access

• GO command to resume execution

• BACKGROUND command to halt core or wake CPU from low-power modes

• Oscillator runs in stop mode, if BDM enabled

Based on these features, BDM is useful for the following reasons:

• In-circuit emulation is not needed, so physical and electrical characteristics of the system are not 
affected.

• BDM is always available for debugging the system and provides a communication link for 
upgrading firmware in existing systems.

• Provides high-speed memory downloading, especially useful for flash programming

• Provides absolute control of the processor, and thus the system. This feature allows quick hardware 
debugging with the same tool set used for firmware development.

21.4.1.1 CPU Halt

Although certain BDM operations can occur in parallel with CPU operations, unrestricted BDM operation 
requires the CPU to be halted. The sources that can cause the CPU to halt are listed below in order of 
priority. Recall that the default configuration of the Version 1 ColdFire core (CF1Core) defines the 
occurrence of certain exception types to automatically generate a system reset. Some of these fault types 
include illegal instructions, privilege errors, address errors, and bus error terminations, with the response 
under control of the processor’s CPUCR[ARD, IRD] bits.
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Table 21-23. CPU Halt Sources

Halt Source Halt Timing Description

Fault-on-fault Immediate

Refers to the occurrence of any fault while exception processing. For example, a bus error is 
signaled during exception stack frame writes or while fetching the first instruction in the 
exception service routine.

CPUCR[ARD] = 1 Immediately enters halt.

CPUCR[ARD] = 0 Reset event is initiated.

Hardware 
breakpoint trigger

Pending
Halt is made pending in the processor. The processor samples for pending halt and interrupt 
conditions once per instruction. When a pending condition is asserted, the processor halts 
execution at the next sample point.

HALT instruction Immediate

BDM disabled
CPUCR[IRD] = 0

A reset is initiated since attempted execution of an 
illegal instruction

CPUCR[IRD] = 1 An illegal instruction exception is generated.

BDM enabled,
supervisor mode

Processor immediately halts execution at the next instruction sample 
point. The processor can be restarted by a BDM GO command. 
Execution continues at the instruction after HALT.

BDM enabled,
user mode

CSR[UHE] = 0
CPUCR[IRD] = 0

A reset event is initiated, because a privileged 
instruction was attempted in user mode.

CSR[UHE] = 0
CPUCR[IRD] = 1

A privilege violation exception is generated.

CSR[UHE] = 1

Processor immediately halts execution at the next 
instruction sample point. The processor can be 
restarted by a BDM GO command. Execution 
continues at the instruction after HALT.

BACKGROUND 
command

Pending

BDM disabled or
flash secure

Illegal command response and BACKGROUND command is ignored.

BDM enabled and 
flash unsecure

Processor is 
running

Halt is made pending in the processor. The processor 
samples for pending halt and interrupt conditions 
once per instruction. When a pending condition is 
asserted, the processor halts execution at the next 
sample point.

Processor is
stopped

Processing of the BACKGROUND command is 
treated in a special manner. The processor exits the 
stopped mode and enters the halted state, at which 
point all BDM commands may be exercised. When 
restarted, the processor continues by executing the 
next sequential instruction (the instruction following 
STOP).
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The processor’s run/stop/halt status is always accessible in XCSR[CPUHALT,CPUSTOP]. Additionally, 
CSR[27–24] indicate the halt source, showing the highest priority source for multiple halt conditions. This 
field is cleared by a read of the CSR. The debug GO command also clears CSR[26–24].

21.4.1.2 Background Debug Serial Interface Controller (BDC)

BDC serial communications use a custom serial protocol first introduced on the M68HC12 Family of 
microcontrollers and later used in the M68HCS08 family. This protocol assumes that the host knows the 
communication clock rate determined by the target BDC clock rate. The BDC clock rate may be the system 
bus clock frequency or an alternate frequency source depending on the state of XCSR[CLKSW]. All 
communication is initiated and controlled by the host which drives a high-to-low edge to signal the 
beginning of each bit time. Commands and data are sent most-significant bit (msb) first. For a detailed 
description of the communications protocol, refer to Section 21.4.1.3, “BDM Communication Details”.

If a host is attempting to communicate with a target MCU that has an unknown BDC clock rate, a SYNC 
command may be sent to the target MCU to request a timed synchronization response signal from which 
the host can determine the correct communication speed. After establishing communications, the host can 
read XCSR and write the clock switch (CLKSW) control bit to change the source of the BDC clock for 
further serial communications if necessary.

BKGD is a pseudo-open-drain pin and there isan on-chip pull-up so no external pull-up resistor is required. 
Unlike typical open-drain pins, the external RC time constant on this pin, which is influenced by external 
capacitance, plays almost no role in signal rise time. The custom protocol provides for brief, actively 
driven speed-up pulses to force rapid rise times on this pin without risking harmful drive level conflicts. 
Refer to Section 21.4.1.3, “BDM Communication Details” for more details.

BKGD held low
for 2 bus clocks 

after reset negated 
for POR or BDM 

reset

Immediate

Flash unsecure

Enters debug mode with XCSR[ENBDM, CLKSW] set. The full set of 
BDM commands is available and debug can proceed.
If the core is reset into a debug halt condition, the processor’s response 
to the GO command depends on the BDM command(s) performed while 
it was halted. Specifically, if the PC register was loaded, the GO 
command causes the processor to exit halted state and pass control to 
the instruction address in the PC, bypassing normal reset exception 
processing. If the PC was not loaded, the GO command causes the 
processor to exit halted state and continue reset exception processing.

Flash secure

Enters debug mode with XCSR[ENBDM, CLKSW] set. The allowable 
commands are limited to the always-available group. A GO command to 
start the processor is not allowed. The only recovery actions in this mode 
are:
 • Issue a BDM reset setting CSR2[BDFR] with CSR2[BDHBR] cleared 

and the BKGD pin held high to reset into normal operating mode
 • Erase the flash to unsecure the memory and then proceed with debug
 • Power cycle the device with the BKGD pin held high to reset into the 

normal operating mode

Table 21-23. CPU Halt Sources (continued)

Halt Source Halt Timing Description
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When no debugger pod is connected to the standard 6-pin BDM interface connector (Section 21.4.3, 
“Freescale-Recommended BDM Pinout”), the internal pull-up on BKGD chooses normal operating mode. 
When a development system is connected, it can pull BKGD and RESET low, release RESET to select 
active background (halt) mode rather than normal operating mode, and then release BKGD. It is not 
necessary to reset the target MCU to communicate with it through the background debug interface. There 
is also a mechanism to generate a reset event in response to setting CSR2[BDFR].

21.4.1.3 BDM Communication Details

The BDC serial interface requires the external host controller to generate a falling edge on the BKGD pin 
to indicate the start of each bit time. The external controller provides this falling edge whether data is 
transmitted or received.

BKGD is a pseudo-open-drain pin that can be driven by an external controller or by the MCU. Data is 
transferred msb first at 16 BDC clock cycles per bit (nominal speed). The interface times-out if 512 BDC 
clock cycles occur between falling edges from the host. If a time-out occurs, the status of any command 
in progress must be determined before new commands can be sent from the host. To check the status of 
the command, follow the steps detailed in the bit description of XCSR[CSTAT] in Table 21-6.

The custom serial protocol requires the debug pod to know the target BDC communication clock speed. 
The clock switch (CLKSW) control bit in the XCSR[31–24] register allows you to select the BDC clock 
source. The BDC clock source can be the bus clock or the alternate BDC clock source. When the MCU is 
reset in normal user mode, CLKSW is cleared and that selects the alternate clock source. This clock source 
is a fixed frequency independent of the bus frequency so it does change if the user modifies clock generator 
settings. This is the preferred clock source for general debugging.

When the MCU is reset in active background (halt) mode, CLKSW is set which selects the bus clock as 
the source of the BDC clock. This CLKSW setting is most commonly used during flash memory 
programming because the bus clock can usually be configured to operate at the highest allowed bus 
frequency to ensure the fastest possible flash programming times. Because the host system is in control of 
changes to clock generator settings, it knows when a different BDC communication speed should be used. 
The host programmer also knows that no unexpected change in bus frequency could occur to disrupt BDC 
communications.

Normally, setting CLKSW should not be used for general debugging because there is no way to ensure the 
application program does not change the clock generator settings. This is especially true in the case of 
application programs that are not yet fully debugged.

After any reset (or at any other time), the host system can issue a SYNC command to determine the speed 
of the BDC clock. CLKSW may be written using the serial WRITE_XCSR_BYTE command through the 
BDC interface. CLKSW is located in the special XCSR byte register in the BDC module and it is not 
accessible in the normal memory map of the ColdFire core. This means that no program running on the 
processor can modify this register (intentionally or unintentionally).

The BKGD pin can receive a high- or low-level or transmit a high- or low-level. The following diagrams 
show timing for each of these cases. Interface timing is synchronous to clocks in the target BDC, but 
asynchronous to the external host. The internal BDC clock signal is shown for reference in counting 
cycles.
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Figure 21-15 shows an external host transmitting a logic 1 or 0 to the BKGD pin of a target MCU. The 
host is asynchronous to the target so there is a 0–1 cycle delay from the host-generated falling edge to 
where the target perceives the beginning of the bit time. Ten target BDC clock cycles later, the target senses 
the bit level on the BKGD pin. Typically, the host actively drives the pseudo-open-drain BKGD pin during 
host-to-target transmissions to speed up rising edges. Because the target does not drive the BKGD pin 
during the host-to-target transmission period, there is no need to treat the line as an open-drain signal 
during this period.

Figure 21-15. BDC Host-to-Target Serial Bit Timing

EARLIEST START

TARGET SENSES BIT LEVEL

10 CYCLES

SYNCHRONIZATION
UNCERTAINTY

BDC CLOCK
(TARGET MCU)

HOST
TRANSMIT 1

HOST
TRANSMIT 0

PERCEIVED START
OF BIT TIME

OF NEXT BIT



Version 1 ColdFire Debug (CF1_DEBUG)

MMA955xL Intelligent Motion-Sensing Platform, Rev. 0

318 Freescale Semiconductor, Inc.

Figure 21-16 shows the host receiving a logic 1 from the target MCU. Because the host is asynchronous 
to the target MCU, there is a 0–1 cycle delay from the host-generated falling edge on BKGD to the 
perceived start of the bit time in the target MCU. The host holds the BKGD pin low long enough for the 
target to recognize it (at least two target BDC cycles). The host must release the low drive before the target 
MCU drives a brief active-high speedup pulse seven cycles after the perceived start of the bit time. The 
host should sample the bit level about 10 cycles after it started the bit time.

Figure 21-16. BDC Target-to-Host Serial Bit Timing (Logic 1)
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BKGD PIN
R-C RISE
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Figure 21-17 shows the host receiving a logic 0 from the target MCU. Because the host is asynchronous 
to the target MCU, there is a 0–1 cycle delay from the host-generated falling edge on BKGD to the start 
of the bit time as perceived by the target MCU. The host initiates the bit time, but the target MCU finishes 
it. Because the target wants the host to receive a logic 0, it drives the BKGD pin low for 13 BDC clock 
cycles, then briefly drives it high to speed up the rising edge. The host samples the bit level about 10 cycles 
after starting the bit time.

Figure 21-17. BDM Target-to-Host Serial Bit Timing (Logic 0)

21.4.1.4 BDM Command Set Descriptions

This section presents detailed descriptions of the BDM commands.

The V1 BDM command set is based on transmission of one or more 8-bit data packets per operation. Each 
operation begins with a host-to-target transmission of an 8-bit command code packet. The command code 
definition broadly maps the operations into four formats as shown in Figure 21-18.
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Miscellaneous Commands

7 6 5 4 3 2 1 0

W 0 0 R/W 0 MSCMD

R/W Optional Command Extension Byte (Data)

Memory Commands

7 6 5 4 3 2 1 0

W 0 0 R/W 1 SZ MCMD

W if addr,
R/W if data

Command Extension Bytes (Address, Data)

Core Register Commands

7 6 5 4 3 2 1 0

W CRG R/W CRN

R/W Command Extension Bytes (Data)

PST Trace Buffer Read Commands

7 6 5 4 3 2 1 0

W 0 1 0 CRN

R Trace Buffer Data[31–24], see Figure 21-19

R Trace Buffer Data[23–16], see Figure 21-19

R Trace Buffer Data[15–08], see Figure 21-19

R Trace Buffer Data[07–00], see Figure 21-19

Figure 21-18. BDM Command Code Encoding
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21.4.1.5 BDM Command Set Summary

Table 21-25 summarizes the BDM command set. Subsequent paragraphs contain detailed descriptions of 
each command. The nomenclature below is used in Table 21-25 to describe the structure of the BDM 
commands.

Table 21-24. BDM Command Code Field Descriptions

Field Description
5

R/W
Read/Write. 
0 Command is performing a write operation. 
1 Command is performing a read operation.

3–0
MSCMD

Miscellaneous command. Defines the miscellaneous command to be performed.
0000 No operation
0001 Display the CPU’s program counter (PC) plus optional capture in the PST trace buffer
0010 Enable the BDM acknowledge communication mode
0011 Disable the BDM acknowledge communication mode
0100 Force a CPU halt (background)
1000 Resume CPU execution (go)
1101 Read/write of the debug XCSR most significant byte
1110 Read/write of the debug CSR2 most significant byte
1111 Read/write of the debug CSR3 most significant byte

3–2
SZ

Memory operand size. Defines the size of the memory reference.
00 8-bit byte
01 16-bit word
10 32-bit long

1–0
MCMD

Memory command. Defines the type of the memory reference to be performed.
00 Simple write if R/W = 0; simple read if R/W = 1
01 Write + status if R/W = 0; read + status if R/W = 1
10 Fill if R/W = 0; dump if R/W = 1
11 Fill + status if R/W = 0; dump + status if R/W = 1

7–6
CRG

Core register group. Defines the core register group to be referenced.
01 CPU’s general-purpose registers (An, Dn) or PST trace buffer
10 DBG’s control registers
11 CPU’s control registers (PC, SR, VBR, CPUCR,...)

4–0
CRN

Core register number. Defines the specific core register (its number) to be referenced. All other CRN values are 
reserved.

CRG CRN Register

01

0x00–0x07 D0–7

0x08–0x0F A0–7

0x10–0x1B PST Buffer 0–11

10 DRc[4:0] as described in Table 21-4

11

0x00 OTHER_A7

0x01 VBR

0x02 CPUCR

0x0E SR

0x0F PC
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Commands begin with an 8-bit hexadecimal command code in the host-to-target direction (most 
significant bit first).

/ = separates parts of the command

d = delay 16 target BDC clock cycles

ad24 = 24-bit memory address in the host-to-target direction

rd8 = 8 bits of read data in the target-to-host direction

rd16 = 16 bits of read data in the target-to-host direction

rd32 = 32 bits of read data in the target-to-host direction

rd.sz = read data, size defined by sz, in the target-to-host direction

wd8 = 8 bits of write data in the host-to-target direction

wd16 = 16 bits of write data in the host-to-target direction

wd32 = 32 bits of write data in the host-to-target direction

wd.sz = write data, size defined by sz, in the host-to-target direction

ss = the contents of XCSR[31:24] in the target-to-host direction (STATUS)

sz = memory operand size (0b00 = byte, 0b01 = word, 0b10 = long)

crn = core register number

WS = command suffix signaling the operation is with status

Table 21-25. BDM Command Summary

Command
Mnemonic

Command
Classification

ACK
if Enb?1

Command
Structure

Description

SYNC Always 
Available

N/A N/A2 Request a timed reference pulse to 
determine the target BDC communication 
speed

ACK_DISABLE Always 
Available

No 0x03/d Disable the communication handshake. 
This command does not issue an ACK 
pulse.

ACK_ENABLE Always 
Available

Yes 0x02/d Enable the communication handshake. 
Issues an ACK pulse after the command is 
executed.

BACKGROUND Non-Intrusive Yes 0x04/d Halt the CPU if ENBDM is set. Otherwise, 
ignore as illegal command.

DUMP_MEM.sz Non-Intrusive Yes (0x32+4 x sz)/d/rd.sz Dump (read) memory based on operand 
size (sz). Used with READ_MEM to dump 
large blocks of memory. An initial 
READ_MEM is executed to set up the 
starting address of the block and to retrieve 
the first result. Subsequent DUMP_MEM 
commands retrieve sequential operands.
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DUMP_MEM.sz_WS Non-Intrusive No (0x33+4 x sz)/d/ss/rd.sz Dump (read) memory based on operand 
size (sz) and report status. Used with 
READ_MEM{_WS} to dump large blocks of 
memory. An initial READ_MEM{_WS} is 
executed to set up the starting address of 
the block and to retrieve the first result. 
Subsequent DUMP_MEM{_WS} 
commands retrieve sequential operands.

FILL_MEM.sz Non-Intrusive Yes (0x12+4 x sz)/wd.sz/d Fill (write) memory based on operand size 
(sz). Used with WRITE_MEM to fill large 
blocks of memory. An initial WRITE_MEM 
is executed to set up the starting address of 
the block and to write the first operand. 
Subsequent FILL_MEM commands write 
sequential operands.

FILL_MEM.sz_WS Non-Intrusive No (0x13+4 x sz)/wd.sz/d/ss Fill (write) memory based on operand size 
(sz) and report status. Used with 
WRITE_MEM{_WS} to fill large blocks of 
memory. An initial WRITE_MEM{_WS} is 
executed to set up the starting address of 
the block and to write the first operand. 
Subsequent FILL_MEM{_WS} commands 
write sequential operands.

GO Non-Intrusive Yes 0x08/d Resume the CPU’s execution3

NOP Non-Intrusive Yes 0x00/d No operation

READ_CREG Active 
Background

Yes (0xE0+CRN)/d/rd32 Read one of the CPU’s control registers

READ_DREG Non-Intrusive Yes (0xA0+CRN)/d/rd32 Read one of the debug module’s control 
registers

READ_MEM.sz Non-Intrusive Yes (0x30+4 x sz)/ad24/d/rd.sz Read the appropriately-sized (sz) memory 
value from the location specified by the 
24-bit address

READ_MEM.sz_WS Non-Intrusive No (0x31+4 x sz)/ad24/d/ss/rd.sz Read the appropriately-sized (sz) memory 
value from the location specified by the 
24-bit address and report status

READ_Rn Active 
Background

Yes (0x60+CRN)/d/rd32 Read the requested general-purpose 
register (An, Dn) from the CPU

READ_XCSR_BYTE Always 
Available

No 0x2D/rd8 Read the most significant byte of the debug 
module’s XCSR

READ_CSR2_BYTE Always 
Available

No 0x2E/rd8 Read the most significant byte of the debug 
module’s CSR2

READ_CSR3_BYTE Always 
Available

No 0x2F/rd8 Read the most significant byte of the debug 
module’s CSR3

WRITE_CREG Active 
Background

Yes (0xC0+CRN)/wd32/d Write one of the CPU’s control registers

Table 21-25. BDM Command Summary (continued)

Command
Mnemonic

Command
Classification

ACK
if Enb?1

Command
Structure

Description
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21.4.1.5.1 SYNC

The SYNC command is unlike other BDC commands because the host does not necessarily know the 
correct speed to use for serial communications until after it has analyzed the response to the SYNC 
command.

To issue a SYNC command, the host:

1. Drives the BKGD pin low for at least 128 cycles of the slowest possible BDC clock (bus clock or 
device-specific alternate clock source).

2. Drives BKGD high for a brief speed-up pulse to get a fast rise time. (This speedup pulse is typically 
one cycle of the host clock which is as fast as the maximum target BDC clock.)

3. Removes all drive to the BKGD pin so it reverts to high impedance.

4. Listens to the BKGD pin for the sync response pulse.

Upon detecting the sync request from the host (which is a much longer low time than would ever occur 
during normal BDC communications), the target:

1. Waits for BKGD to return to a logic high.

2. Delays 16 cycles to allow the host to stop driving the high speed-up pulse.

3. Drives BKGD low for 128 BDC clock cycles.

4. Drives a 1-cycle high speed-up pulse to force a fast rise time on BKGD.

5. Removes all drive to the BKGD pin so it reverts to high impedance.

WRITE_DREG Non-Intrusive Yes (0x80+CRN)/wd32/d Write one of the debug module’s control 
registers

WRITE_MEM.sz Non-Intrusive Yes (0x10+4 x sz)/ad24/wd.sz/d Write the appropriately-sized (sz) memory 
value to the location specified by the 24-bit 
address

WRITE_MEM.sz_WS Non-Intrusive No (0x11+4 x sz)/ad24/wd.sz/d/ss Write the appropriately-sized (sz) memory 
value to the location specified by the 24-bit 
address and report status

WRITE_Rn Active 
Background

Yes (0x40+CRN)/wd32/d Write the requested general-purpose 
register (An, Dn) of the CPU

WRITE_XCSR_BYTE Always 
Available

No 0x0D/wd8 Write the most significant byte of the debug 
module’s XCSR

WRITE_CSR2_BYTE Always 
Available

No 0x0E/wd8 Write the most significant byte of the debug 
module’s CSR2

WRITE_CSR3_BYTE Always 
Available

No 0x0F/wd8 Write the most significant byte of the debug 
module’s CSR3

1 This column identifies if the command generates an ACK pulse if operating with acknowledge mode enabled. See 
Section 21.4.1.8, “Hardware Handshake Abort Procedure”,” for addition information.

2 The SYNC command is a special operation which does not have a command code.
3 If a GO command is received while the processor is not halted, it performs no operation.

Table 21-25. BDM Command Summary (continued)

Command
Mnemonic

Command
Classification

ACK
if Enb?1

Command
Structure

Description
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The host measures the low time of this 128-cycle sync response pulse and determines the correct speed for 
subsequent BDC communications. Typically, the host can determine the correct communication speed 
within a few percent of the actual target speed and the serial protocol can easily tolerate this speed error.

21.4.1.5.2 ACK_DISABLE

Disables the serial communication handshake protocol. The subsequent commands, issued after the 
ACK_DISABLE command, do not execute the hardware handshake protocol. This command is not 
followed by an ACK pulse.

21.4.1.5.3 ACK_ENABLE

Enables the hardware handshake protocol in the serial communication. The hardware handshake is 
implemented by an acknowledge (ACK) pulse issued by the target MCU in response to a host command. 
The ACK_ENABLE command is interpreted and executed in the BDC logic without the need to interface 
with the CPU. However, an acknowledge (ACK) pulse is issued by the target device after this command 
is executed. This feature can be used by the host to evaluate if the target supports the hardware handshake 
protocol. If the target supports the hardware handshake protocol, subsequent commands are enabled to 
execute the hardware handshake protocol, otherwise this command is ignored by the target.

For additional information about the hardware handshake protocol, refer to Section 21.4.1.7 and Section 
21.4.1.8.

21.4.1.5.4 BACKGROUND

Disable host/target handshake protocol Always Available

0x03

host  
target

D
L
Y

Enable host/target handshake protocol Always Available

0x02

host  
target

D
L
Y

Enter active background mode (if enabled) Non-intrusive

0x04

host  
target

D
L
Y
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Provided XCSR[ENBDM] is set (BDM enabled), the BACKGROUND command causes the target MCU 
to enter active background (halt) mode as soon as the current CPU instruction finishes. If ENBDM is 
cleared (its default value), the BACKGROUND command is ignored.

A delay of 16 BDC clock cycles is required after the BACKGROUND command to allow the target MCU 
to finish its current CPU instruction and enter active background mode before a new BDC command can 
be accepted.

After the target MCU is reset into a normal operating mode, the host debugger would send a 
WRITE_XCSR_BYTE command to set ENBDM before attempting to send the BACKGROUND 
command the first time. Normally, the development host would set ENBDM once at the beginning of a 
debug session or after a target system reset, and then leave the ENBDM bit set during debugging 
operations. During debugging, the host would use GO commands to move from active background mode 
to normal user program execution and would use BACKGROUND commands or breakpoints to return to 
active background mode.

21.4.1.5.5 DUMP_MEM.sz, DUMP_MEM.sz_WS

DUMP_MEM.sz

Read memory specified by debug address register, then 
increment address

Non-intrusive

0x32
Memory 
data[7-0]

host  
target

D
L
Y

target  
host

0x36
Memory 

data[15-8]
Memory 
data[7-0]

host  
target

D
L
Y

target  
host

target  
host

0x3A
Memory 

data[31-24]
Memory 

data[23-16]
Memory 

data[15-8]
Memory 
data[7-0]

host  
target

D
L
Y

target  
host

target  
host

target  
host

target  
host
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DUMP_MEM{_WS} is used with the READ_MEM{_WS} command to access large blocks of memory. 
An initial READ_MEM{_WS} is executed to set-up the starting address of the block and to retrieve the 
first result. If an initial READ_MEM{_WS} is not executed before the first DUMP_MEM{_WS}, an 
illegal command response is returned. The DUMP_MEM{_WS} command retrieves subsequent 
operands. The initial address is incremented by the operand size (1, 2, or 4) and saved in a temporary 
register. Subsequent DUMP_MEM{_WS} commands use this address, perform the memory read, 
increment it by the current operand size, and store the updated address in the temporary register. If the 
with-status option is specified, the core status byte contained in XCSR[31–24] (XCSR_SB) is returned 
before the read data. The XCSR status byte reflects the state after the memory read was performed.

NOTE
DUMP_MEM_{WS} does not check for a valid address; it is a valid 
command only when preceded by NOP, READ_MEM_{WS}, or another 
DUMP_MEM{_WS} command. Otherwise, an illegal command response 
is returned. NOP can be used for inter-command padding without corrupting 
the address pointer.

The size field (sz) is examined each time a DUMP_MEM{_WS} command is processed, allowing the 
operand size to be dynamically altered. The examples show the DUMP_MEM.B{_WS}, 
DUMP_MEM.W{_WS} and DUMP_MEM.L{_WS} commands.

DUMP_MEM.sz_WS

Read memory specified by debug address register with status, 
then increment address

Non-intrusive

0x33 XCSR_SB
Memory 
data[7-0]

host  
target

D
L
Y

target  
host

target  
host

0x37 XCSR_SB
Memory 

data[15-8]
Memory 
data[7-0]

host  
target

D
L
Y

target  
host

target  
host

target  
host

0x3B XCSR_SB
Memory 

data[31-24]
Memory

data23-16]
Memory 

data[15-8]
Memory 
data[7-0]

host  
target

D
L
Y

target  
host

target  
host

target  
host

target  
host

target  
host
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21.4.1.5.6 FILL_MEM.sz, FILL_MEM.sz_WS

FILL_MEM{_WS} is used with the WRITE_MEM{_WS} command to access large blocks of memory. 
An initial WRITE_MEM{_WS} is executed to set up the starting address of the block and write the first 
datum. If an initial WRITE_MEM{_WS} is not executed before the first FILL_MEM{_WS}, an illegal 
command response is returned. The FILL_MEM{_WS} command stores subsequent operands. The initial 
address is incremented by the operand size (1, 2, or 4) and saved in a temporary register. Subsequent 
WRITE_MEM{_WS} commands use this address, perform the memory write, increment it by the current 
operand size, and store the updated address in the temporary register. If the with-status option is specified, 

FILL_MEM.sz

Write memory specified by debug address register, then 
increment address

Non-intrusive

0x12
Memory 
data[7-0]

host  
target

host  
target

D
L
Y

0x16
Memory 

data[15-8]
Memory 
data[7-0]

host  
target

host  
target

host  
target

D
L
Y

0x1A
Memory 

data[31-24]
Memory 

data[23-16]
Memory 

data[15-8]
Memory 
data[7-0]

host  
target

host  
target

host  
target

host  
target

host  
target

D
L
Y

FILL_MEM.sz_WS

Write memory specified by debug address register with 
status, then increment address

Non-intrusive

0x12
Memory 
data[7-0]

XCSR_SB

host  
target

host  
target

D
L
Y

target  
host

0x16
Memory 

data[15-8]
Memory 
data[7-0]

XCSR_SB

host  
target

host  
target

host  
target

D
L
Y

target  
host

0x1A
Memory 

data[31-24]
Memory 

data[23-16]
Memory 

data[15-8]
Memory 
data[7-0]

XCSR_SB

host  
target

host  
target

host  
target

host  
target

host  
target

D
L
Y

target  
host
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the core status byte contained in XCSR[31–24] (XCSR_SB) is returned after the write data. The XCSR 
status byte reflects the state after the memory write was performed.

NOTE
FILL_MEM_{WS} does not check for a valid address; it is a valid 
command only when preceded by NOP, WRITE_MEM_{WS}, or another 
FILL_MEM{_WS} command. Otherwise, an illegal command response is 
returned. NOP can be used for intercommand padding without corrupting 
the address pointer.

The size field (sz) is examined each time a FILL_MEM{_WS} command is processed, allowing the 
operand size to be dynamically altered. The examples show the FILL_MEM.B{_WS}, 
FILL_MEM.W{_WS} and FILL_MEM.L{_WS} commands.

21.4.1.6 GO

This command is used to exit active background (halt) mode and begin (or resume) execution of the 
application’s instructions. The CPU’s pipeline is flushed and refilled before normal instruction execution 
resumes. Pre fetching begins at the current address in the PC and at the current privilege level. If any 
register (such as the PC or SR) is altered by a BDM command while the processor is halted, the updated 
value is used when perfecting resumes. If a GO command is issued and the CPU is not halted, the 
command is ignored.

21.4.1.6.1 NOP

NOP performs no operation and may be used as a null command where required.

Go Non-intrusive

0x08

host  
target

D
L
Y

No operation Non-intrusive

0x00

host  
target

D
L
Y
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21.4.1.6.2 READ_CREG

If the processor is halted, this command reads the selected control register and returns the 32-bit result. 
This register grouping includes the PC, SR, CPUCR, VBR, and OTHER_A7. Accesses to processor 
control registers are always 32-bits wide, regardless of implemented register width. The register is 
addressed through the core register number (CRN). See Table 21-24 for the CRN details when CRG is 11.

If the processor is not halted, this command is rejected as an illegal operation and no operation is 
performed.

21.4.1.6.3 READ_DREG

This command reads the selected debug control register and returns the 32-bit result. This register 
grouping includes the CSR, XCSR, CSR2, and CSR3. Accesses to debug control registers are always 
32-bits wide, regardless of implemented register width. The register is addressed through the core register 
number (CRN). See Table 21-4 for CRN details.

Read CPU control register Active Background

0xE0+CRN
CREG data 

[31-24]
CREG data 

[23-16]
CREG data 

[15-8]
CREG data 

[7-0]

host  
target

D
L
Y

target  
host

target  
host

target  
host

target  
host

Read debug control register Non-intrusive

0xA0+CRN
DREG data 

[31-24]
DREG data

[23-16]
DREG data

[15-8]
DREG data

[7-0]

host  
target

D
L
Y

target  
host

target  
host

target  
host

target  
host
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21.4.1.6.4 READ_MEM.sz, READ_MEM.sz_WS

Read data at the specified memory address. The reference address is transmitted as three 8-bit packets (msb 
to lsb) immediately after the command packet. The access attributes are defined by BAAR[TT,TM]. The 
hardware forces low-order address bits to zeros for word and longword accesses to ensure these accesses 
are on 0-modulo-size alignments. If the with-status option is specified, the core status byte contained in 
XCSR[31–24] (XCSR_SB) is returned before the read data. The XCSR status byte reflects the state after 
the memory read was performed.

READ_MEM.sz

Read memory at the specified address Non-intrusive

0x30 Address[23-0]
Memory 
data[7-0]

host  
target

host  
target

D
L
Y

target  
host

0x34 Address[23-0]
Memory 

data[15-8]
Memory 
data[7-0]

host  
target

host 
target

D
L
Y

target  
host

target  
host

0x38 Address[23-0]
Memory 

data[31-24]
Memory 

data[23-16]
Memory 

data[15-8]
Memory 
data[7-0]

host  
target

host 
target

D
L
Y

target  
host

target  
host

target  
host

target  
host

READ_MEM.sz_WS

Read memory at the specified address with status Non-intrusive

0x31 Address[23-0] XCSR_SB
Memory 
data[7-0]

host  
target

host  
target

D
L
Y

target  
host

target  
host

0x35 Address[23-0] XCSR_SB
Memory 

data [15-8]
Memory 

data [7-0]

host  
target

host  
target

D
L
Y

target  
host

target  
host

target  
host

0x39 Address[23-0] XCSR_SB
Memory 

data[31-24]
Memory

data[23-16]
Memory 

data [15-8]
Memory 

data [7-0]

host  
target

host  
target

D
L
Y

target  
host

target  
host

target  
host

target  
host

target  
host
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The examples show the READ_MEM.B{_WS}, READ_MEM.W{_WS} and READ_MEM.L{_WS} 
commands.

21.4.1.6.5 READ_Rn

If the processor is halted, this command reads the selected CPU general-purpose register (An, Dn) and 
returns the 32-bit result. See Table 21-24 for the CRN details when CRG is 01.

If the processor is not halted, this command is rejected as an illegal operation and no operation is 
performed.

21.4.1.6.6 READ_XCSR_BYTE

Read the special status byte of XCSR (XCSR[31–24]). This command can be executed in any mode.

21.4.1.6.7 READ_CSR2_BYTE

Read the most significant byte of CSR2 (CSR2[31–24]). This command can be executed in any mode.

Read general-purpose CPU register Active Background

0x60+CRN
Rn data 
[31–24]

Rn data
[23–16]

Rn data 
[15–8]

Rn data 
[7–0]

host  
target

D
L
Y

target  
host

target  
host

target  
host

target  
host

Read XCSR Status Byte Always Available

0x2D
XCSR

[31–24]

host  
target

host  
target

Read CSR2 Status Byte Always Available

0x2E
CSR2

[31–24]

host  
target

host  
target
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21.4.1.6.8 READ_CSR3_BYTE

Read the most significant byte of the CSR3 (CSR3[31–24]). This command can be executed in any mode.

21.4.1.6.9 WRITE_CREG

If the processor is halted, this command writes the 32-bit operand to the selected control register. This 
register grouping includes the PC, SR, CPUCR, VBR, and OTHER_A7. Accesses to processor control 
registers are always 32-bits wide, regardless of implemented register width. The register is addressed 
through the core register number (CRN). See Table 21-24 for the CRN details when CRG is 11.

If the processor is not halted, this command is rejected as an illegal operation and no operation is 
performed.

21.4.1.6.10 WRITE_DREG

This command writes the 32-bit operand to the selected debug control register. This grouping includes all 
the debug control registers ({X}CSRn, BAAR, AATR, TDR, PBRn, PBMR, ABxR, DBR, DBMR). 
Accesses to debug control registers are always 32-bits wide, regardless of implemented register width. The 
register is addressed through the core register number (CRN). See Table 21-4 for CRN details.

Read CSR3 Status Byte Always Available

0x2F
CSR2

[31–24]

host  
target

host  
target

Write CPU control register Active Background

0xC0+CRN
CREG data 

[31–24]
CREG data

[23–16]
CREG data

[15–8]
CREG data

[7–0]

host  
target

host  
target

host  
target

host  
target

host  
target

D
L
Y

Write debug control register Non-intrusive

0x80+CRN
DREG data 

[31–24]
DREG data 

[23–16]
DREG data 

[15–8]
DREG data 

[7–0]

host  
target

host  
target

host  
target

host  
target

host  
target

D
L
Y
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21.4.1.6.11 WRITE_MEM.sz, WRITE_MEM.sz_WS

Write data at the specified memory address. The reference address is transmitted as three 8-bit packets 
(msb to lsb) immediately after the command packet. The access attributes are defined by BAAR[TT,TM]. 
The hardware forces low-order address bits to zeros for word and longword accesses to ensure these 
accesses are on 0-modulo-size alignments. If the with-status option is specified, the core status byte 
contained in XCSR[31–24] (XCSR_SB) is returned before the read data. The XCSR status byte reflects 
the state after the memory read was performed.

The examples show the WRITE_MEM.B{_WS}, WRITE_MEM.W{_WS}, and WRITE_MEM.L{_WS} 
commands.

WRITE_MEM.sz

Write memory at the specified address Non-intrusive

0x10 Address[23-0]
Memory 
data[7–0]

host  
target

host  target
host  
target

D
L
Y

0x14 Address[23-0]
Memory 

data[15–8]
Memory 
data[7–0]

host  
target

host  target
host  
target

host  
target

D
L
Y

0x18 Address[23-0]
Memory 

data[31–24]
Memory 

data[23–16]
Memory 

data[15–8]
Memory 
data[7–0]

host  
target

host  target
host  
target

host  
target

host  
target

host  
target

D
L
Y

WRITE_MEM.sz_WS

Write memory at the specified address with status Non-intrusive

0x11 Address[23-0]
Memory 
data[7–0]

XCSR_SB

host  
target

host  
target

host  
target

D
L
Y

target  
host

0x15 Address[23-0]
Memory 

data[15–8]
Memory 
data[7–0]

XCSR_SB

host  
target

host  
target

host  
target

host  
target

D
L
Y

target  
host

0x19 Address[23-0]
Memory 

data[31–24]
Memory 

data[23–16]
Memory 

data[15–8]
Memory 
data[7–0]

XCSR_SB

host  
target

host  
target

host  
target

host  
target

host  
target

host  
target

D
L
Y

target  
host
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21.4.1.6.12 WRITE_Rn

If the processor is halted, this command writes the 32-bit operand to the selected CPU general-purpose 
register (An, Dn). See Table 21-24 for the CRN details when CRG is 01.

If the processor is not halted, this command is rejected as an illegal operation and no operation is 
performed.

21.4.1.6.13 WRITE_XCSR_BYTE

Write the special status byte of XCSR (XCSR[31–24]). This command can be executed in any mode.

21.4.1.6.14 WRITE_CSR2_BYTE

Write the most significant byte of CSR2 (CSR2[31–24]). This command can be executed in any mode.

21.4.1.6.15 WRITE_CSR3_BYTE

Write the most significant byte of CSR3 (CSR3[31–24]). This command can be executed in any mode.

Write general-purpose CPU register Active Background

0x40+CRN
Rn data 
[31–24]

Rn data 
[23–16]

Rn data 
[15–8]

Rn data 
[7–0]

host  
target

host  
target

host  
target

host  
target

host  
target

D
L
Y

Write XCSR Status Byte Always Available

0x0D
XCSR Data 

[31–24]

host  
target

host  
target

Write CSR2 Status Byte Always Available

0x0E
CSR2 Data 

[31–24]

host  
target

host  
target

Write CSR3 Status Byte Always Available

0x0F
CSR3 Data 

[31–24]

host  
target

host  
target
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21.4.1.7 Serial Interface Hardware Handshake Protocol

BDC commands that require CPU execution are ultimately treated at the core clock rate. Because the BDC 
clock source can be asynchronous relative to the bus frequency when CLKSW is cleared, it is necessary 
to provide a handshake protocol so the host can determine when an issued command is executed by the 
CPU. This section describes this protocol.

The hardware handshake protocol signals to the host controller when an issued command was successfully 
executed by the target. This protocol is implemented by a low pulse (16 BDC clock cycles) followed by a 
brief speedup pulse on the BKGD pin, generated by the target MCU when a command, issued by the host, 
has been successfully executed. See Figure 21-19. This pulse is referred to as the ACK pulse. After the 
ACK pulse is finished, the host can start the data-read portion of the command if the last-issued command 
was a read command, or start a new command if the last command was a write command or a control 
command (BACKGROUND, GO, NOP). The ACK pulse is not issued earlier than 32 BDC clock cycles 
after the BDC command was issued. The end of the BDC command is assumed to be the 16th BDC clock 
cycle of the last bit. This minimum delay assures enough time for the host to recognize the ACK pulse. 
There is no upper limit for the delay between the command and the related ACK pulse, because the 
command execution depends on the CPU bus frequency, which in some cases could be slow compared to 
the serial communication rate. This protocol allows great flexibility for pod designers, because it does not 
rely on any accurate time measurement or short response time to any event in the serial communication.

Figure 21-19. Target Acknowledge Pulse (ACK)

NOTE
If the ACK pulse was issued by the target, the host assumes the previous 
command was executed. If the CPU enters a stop mode prior to executing a 
non-intrusive command, the command is discarded and the ACK pulse is 
not issued. After entering a stop mode, the BDC command is no longer 
pending and the XCSR[CSTAT] value of 001 is kept until the next command 
is successfully executed.

16 CYCLES

BDC CLOCK
(TARGET MCU)

TARGET
TRANSMITS

HIGH-IMPEDANCE

BKGD PIN

HIGH-IMPEDANCE

MINIMUM DELAY 
FROM THE BDC COMMAND

32 CYCLES

EARLIEST
START OF
NEXT BIT

SPEED UP PULSE

16th CYCLE OF THE
LAST COMMAD BIT

ACK PULSE
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Figure 21-20 shows the ACK handshake protocol in a command level timing diagram. A READ_MEM.B 
command is used as an example:

1. The 8-bit command code is sent by the host, followed by the address of the memory location to be 
read.

2. The target BDC decodes the command and sends it to the CPU.

3. Upon receiving the BDC command request, the CPU schedules a execution slot for the command.

4. The CPU temporarily stalls the instruction stream at the scheduled point, executes the 
READ_MEM.B command and then continues.

This process is referred to as cycle stealing. The READ_MEM.B appears as a single-cycle operation to the 
processor, even though the pipelined nature of the Operand Execution Pipeline requires multiple CPU 
clock cycles for it to actually complete. After that, the debug module tracks the execution of the 
READ_MEM.b command as the processor resumes the normal flow of the application program. After 
detecting the READ_MEM.B command is done, the BDC issues an ACK pulse to the host controller, 
indicating that the addressed byte is ready to be retrieved. After detecting the ACK pulse, the host initiates 
the data-read portion of the command.

Figure 21-20. Handshake Protocol at Command Level

Unlike a normal bit transfer, where the host initiates the transmission by issuing a negative edge in the 
BKGD pin, the serial interface ACK handshake pulse is initiated by the target MCU. The hardware 
handshake protocol in Figure 21-20 specifies the timing when the BKGD pin is being driven, so the host 
should follow these timing constraints to avoid the risks of an electrical conflict at the BKGD pin. 

The ACK handshake protocol does not support nested ACK pulses. If a BDC command is not 
acknowledged by an ACK pulse, the host first needs to abort the pending command before issuing a new 
BDC command. When the CPU enters a stop mode at about the same time the host issues a command that 
requires CPU execution, the target discards the incoming command. Therefore, the command is not 
acknowledged by the target, meaning that the ACK pulse is not issued in this case. After a certain time, 
the host could decide to abort the ACK protocol to allow a new command. Therefore, the protocol provides 
a mechanism where a command (a pending ACK) could be aborted. Unlike a regular BDC command, the 
ACK pulse does not provide a time-out. In the case of a STOP instruction where the ACK is prevented 
from being issued, it would remain pending indefinitely if not aborted. See the handshake abort procedure 
described in Section 21.4.1.8, “Hardware Handshake Abort Procedure”.

READ_MEM.B

BDC ISSUES THE

BYTE IS NEW BDC COMMANDBKGD PIN ADDRESS[23–0]

CPU EXECUTES THE
READ_MEM.B
COMMAND

RETRIEVED

HOST TARGET

HOST TARGET

HOST TARGET

DEBUG DECODES
THE COMMAND

ACK PULSE (NOT TO SCALE)
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21.4.1.8 Hardware Handshake Abort Procedure

The abort procedure is based on the SYNC command. To abort a command that has not responded with an 
ACK pulse, the host controller generates a sync request (by driving BKGD low for at least 128 serial clock 
cycles and then driving it high for one serial clock cycle as a speedup pulse). By detecting this long low 
pulse on the BKGD pin, the target executes the sync protocol (see Section 21.4.1.5.1, “SYNC”), and 
assumes that the pending command and therefore the related ACK pulse, are being aborted. Therefore, 
after the sync protocol completes, the host is free to issue new BDC commands.

Because the host knows the target BDC clock frequency, the SYNC command does not need to consider 
the lowest possible target frequency. In this case, the host could issue a SYNC close to the 128 serial clock 
cycles length, providing a small overhead on the pulse length to assure the sync pulse is not misinterpreted 
by the target.

It is important to notice that any issued BDC command that requires CPU execution is scheduled for 
execution by the pipeline based on the dynamic state of the machine, provided the processor does not enter 
any of the stop modes. If the host aborts a command by sending the sync pulse, it should then read 
XCSR[CSTAT] after the sync response is issued by the target, checking for CSTAT cleared, before 
attempting to send any new command that requires CPU execution. This prevents the new command from 
being discarded at the debug/CPU interface, due to the pending command being executed by the CPU. Any 
new command should be issued only after XCSR[CSTAT] is cleared.

There are multiple reasons that could cause a command to take too long to execute, measured in terms of 
the serial communication rate. The BDC clock frequency is much faster than the CPU clock frequency or 
the CPU is accessing a slow memory, which would cause pipeline stall cycles to occur. All commands 
referencing the CPU registers or memory require access to the processor’s local bus to complete. If the 
processor is executing a tight loop contained within a single aligned longword, the processor may never 
successfully grant the internal bus to the debug command. For example:

align 4
label1:nop

bra.blabel1
or

align 4
label2:bra.wlabel2

These two examples of tight loops exhibit the BDM lockout behavior. If the loop spans across two 
longwords, there are no issues, so the recommended construct is:

align 4
label3:bra.llabel3



Version 1 ColdFire Debug (CF1_DEBUG)

MMA955xL Intelligent Motion-Sensing Platform, Rev. 0

Freescale Semiconductor, Inc. 339

The hardware handshake protocol is appropriate for these situations, but the host could also decide to use 
the software handshake protocol instead. In this case, if XCSR[CSTAT] is 001, there is a BDC command 
pending at the debug/CPU interface. The host controller should monitor XCSR[CSTAT] and wait until it 
is 000 to be able to issue a new command that requires CPU execution. However, if the XCSR[CSTAT] is 
1xx, the host should assume the last command failed to execute. To recover from this condition, the 
following sequence is suggested:

1. Issue a SYNC command to reset the BDC communication channel.

2. The host issues a BDM NOP command.

3. The host reads the channel status using a READ_XCSR_BYTE command.

4. If XCSR[CSTAT] is 000 then the status is okay; proceed
else

Halt the CPU using a BDM BACKGROUND command
Repeat steps 1,2,3
If XCSR[CSTAT] is 000, then proceed, else reset the device

Figure 21-21 shows a SYNC command aborting a READ_MEM.B. After the command is aborted, a new 
command could be issued by the host.

NOTE
Figure 21-21 signal timing is not drawn to scale.

Figure 21-21. ACK Abort Procedure at the Command Level

READ_MEM.B READ_XCSR_BYTEBKGD PIN ADDRESS[23-0]
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THE READ_MEM.B CMD

HOST TARGET HOST TARGET
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NEW BDC COMMAND

(NOT TO SCALE) (NOT TO SCALE)
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Figure 21-22 a shows a conflict between the ACK pulse and the sync request pulse. This conflict could 
occur if a pod device is connected to the target BKGD pin and the target is already executing a BDC 
command. Consider that the target CPU is executing a pending BDC command at the exact moment the 
pod is being connected to the BKGD pin. In this case, an ACK pulse is issued at the same time as the SYNC 
command. In this case there is an electrical conflict between the ACK speedup pulse and the sync pulse. 
Because this is not a probable situation, the protocol does not prevent this conflict from happening.

Figure 21-22. ACK Pulse and SYNC Request Conflict

The hardware handshake protocol is enabled by the ACK_ENABLE command and disabled by the 
ACK_DISABLE command. It also allows for pod devices to choose between the hardware handshake 
protocol or the software protocol that monitors the XCSR status byte. The ACK_ENABLE and 
ACK_DISABLE commands are:

• ACK_ENABLE — Enables the hardware handshake protocol. The target issues the ACK pulse 
when a CPU command is executed. The ACK_ENABLE command itself also has the ACK pulse 
as a response.

• ACK_DISABLE — Disables the ACK pulse protocol. In this case, the host should verify the state 
of XCSR[CSTAT] to evaluate if there are pending commands and to check if the CPU’s operating 
state has changed to or from active background mode via XCSR[31–30].

The default state of the protocol, after reset, is hardware handshake protocol disabled.

The commands that do not require CPU execution, or that have the status register included in the retrieved 
bit stream, do not perform the hardware handshake protocol. Therefore, the target does not respond with 
an ACK pulse for those commands even if the hardware protocol is enabled. Conversely, only commands 
that require CPU execution and do not include the status byte perform the hardware handshake protocol. 
See the third column in Table 21-25 for the complete enumeration of this function.
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An exception is the ACK_ENABLE command, which does not require CPU execution but responds with 
the ACK pulse. This feature can be used by the host to evaluate if the target supports the hardware 
handshake protocol. If an ACK pulse is issued in response to this command, the host knows that the target 
supports the hardware handshake protocol. If the target does not support the hardware handshake protocol 
the ACK pulse is not issued. In this case, the ACK_ENABLE command is ignored by the target, because 
it is not recognized as a valid command.

21.4.2 Real-Time Debug Support

The ColdFire family supports debugging real-time applications. For these types of embedded systems, the 
processor must continue to operate during debug. The foundation of this area of debug support is that while 
the processor cannot be halted to allow debugging, the system can generally tolerate the small intrusions 
with minimal effect on real-time operation.

NOTE
The details regarding real-time debug support will be supplied at a later 
time.

21.4.3 Freescale-Recommended BDM Pinout

Typically, a relatively simple interface pod is used to translate commands from a host computer into 
commands for the custom serial interface to the single-wire background debug system. Depending on the 
development tool vendor, this interface pod may use a standard RS-232 serial port, a parallel printer port, 
or some other type of communications such as a universal serial bus (USB) to communicate between the 
host PC and the pod. The pod typically connects to the target system with ground, the BKGD pin, RESET, 
and sometimes VDD. An open-drain connection to reset allows the host to force a target system reset, 
useful to regain control of a lost target system or to control startup of a target system before the on-chip 
nonvolatile memory has been programmed. Sometimes VDD can be used to allow the pod to use power 
from the target system to avoid the need for a separate power supply. However, if the pod is powered 
separately, it can be connected to a running target system without forcing a target system reset or otherwise 
disturbing the running application program.

Figure 21-23. Recommended BDM Connector
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